
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

XML BASED ADAPTIVE IPSEC POLICY MANAGEMENT
IN A TRUST MANAGEMENT CONTEXT

by

Raj Mohan

September 2002

Thesis Advisor: Cynthia E. Irvine
Second Reader: Timothy E. Levin

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: XML Based Adaptive IPsec Policy Management in a
Trust Management Context

6. AUTHOR(S) Raj Mohan

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

TCP/IP provided the impetus for the growth of the Internet and the IPsec protocol now promises to add to it
the desired security strength. IPsec provides users with a mechanism to enforce a range of security services for
both confidentiality and integrity, enabling them to securely pass information across networks. Dynamic
parameterization of IPsec further enables security mechanisms to adjust the level of security service “on-the-fly”
to respond to changing network and operational conditions. The IPsec implementation in OpenBSD works in
conjunction with the Trust Management System, KeyNote, to achieve this. However the KeyNote engine requires
that an IPsec policy be defined in the KeyNote specification syntax. Defining a security policy in the KeyNote
Specification language is, however, extremely difficult and the complexity of the language could lead to incorrect
specification of the desired policy, thus degrading the security of the network. This thesis looks into an alternative
XML representation of this language and a graphical user interface to evolve a consistent and correct security
policy. The interface has the simplicity of a simple menu-driven editor that not only provides KeyNote with a
policy in the specified syntax but also integrates techniques for correctness verification and validation.

15. NUMBER OF
PAGES

89

14. SUBJECT TERMS KeyNote, ISAKMP, IKE, IPsec, Graphical User Interface, Security
Assoication (SA), Security Policy Database (SPD), XML, XSLT, DTD, Schema, JDOM, SAX,
Security Policy.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

XML BASED ADAPTIVE IPSEC POLICY MANAGEMENT IN A TRUST
MANAGEMENT CONTEXT

Raj Mohan

Major, Indian Army
ME, Indian Institute Of Science, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
AND

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2002

Author: Raj Mohan

Approved by: Cynthia E. Irvine

Thesis Advisor

Timothy E. Levin
Second Reader/Co-Advisor

Christopher S. Eagle
Chairman, Department of Computer Science

Dan C Boger
Chairman, Department of Information Technology Management

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

TCP/IP provided the impetus for the growth of the Internet and the IPsec protocol

now promises to add to it the desired security strength. IPsec provides users with a

mechanism to enforce a range of security services for both confidentiality and integrity,

enabling them to securely pass information across networks. Dynamic parameterization

of IPsec further enables security mechanisms to adjust the level of security service “on-

the-fly” to respond to changing network and operational conditions. The IPsec

implementation in OpenBSD works in conjunction with the Trust Management System,

KeyNote, to achieve this. However the KeyNote engine requires that an IPsec policy be

defined in the KeyNote specification syntax. Defining a security policy in the KeyNote

Specification language is, however, extremely difficult and the complexity of the

language could lead to incorrect specification of the desired policy, thus degrading the

security of the network. This thesis looks into an alternative XML representation of this

language and a graphical user interface to evolve a consistent and correct security policy.

The interface has the simplicity of a simple menu-driven editor that not only provides

KeyNote with a policy in the specified syntax but also integrates techniques for

correctness verification and validation.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE...1
B. BACKGROUND ..1
C. EXPECTED BENEFITS OF THE RESEARCH..3
D. RESEARCH OBJECTIVES...3
E. LAYOUT OF THE THESIS...4

II. PREVIOUS WORK...5
A. IPSEC..5

1. Security Associations ...7
2. SA Selectors ..7
3. Transport Mode and Tunnel Modes ..8
4. Combining Security Associations ...8

a. Transport Adjacency:..9
b. Iterated Tunneling: ...9

5. Key Management ...10
B. KEYNOTE TRUST MANAGEMENT SYSTEM.......................................11
C. QUALITY OF SECURITY SERVICE (QOSS) ...14

1. Managing Quality of Security Service (QoSS)16
a. Dynamic Parameters...16
b. User Choices for Security Levels..17
c. The Notion of Network Modes..18
d. Mapping Abstract Parameters to Security Mechanism.........19

2. Implementation Issues ...20

III. XML AND KEYNOTE POLICY LANGUAGE...21
A. KEYNOTE POLICY SPECIFICATION LANGUAGE21

1. Introduction..21
2. Keynote Assertion Syntax ...21

a. Basic Structure..21
b. Conditions Field..22

3. Keynote Policy File ..23
4. Keynote Policy File with Quality of Service Parameters.23

B. XML ..25
1. Introduction..25
2. XML Parsers ..25
3. XML DTDs ...26
4. XML Schemas ..28
5. XSLT ...29
6. Advantages of XML for the Policy Specification Language30

a. Tools ..30
b. Security ..30

 viii

c. Platform Independence...31
d. Single Data Multiple Presentation ...31
e. Consistency and Accuracy ..31
f. Extensible Format...31
g. Ease of Use ..31
h Semantic Content Use:..32

C. INTEGRATING XML AND KEYNOTE POLICY32

IV. DESIGN AND IMPLEMENTATION ...33
A. DESIGN METHODOLOGY ..33
B. ALTERNATIVE DESIGN APPROACHES ...33

1. Option 1: Non XML Version ..33
a. Data Structure ...33
b. The Algorithm:..34
c. Advantages of the Solution...35
d. Shortcomings of the Solution ...36
e. Implementation and Evaluation...36

2. Option 2: Defining an XML Policy File Format.36
C. XML POLICY FILE ...37
D. XSL..39
E. JAVA BASED GUI..40
F. XML SPY – AN XML EDITOR...44

V. RESEARCH SUMMARY AND FUTURE WORK..49
A. INTRODUCTION..49
B. SUMMARY OF RESEARCH PERFORMED IN THIS THESIS49
C. FUTURE WORK...50

1. Policy File Format..50
2. Schema Design and RELAX NG ..50
3. Policy Editor Enhancements...51
3. XML Interface to Keynote ..52

D. CONCLUSION ..53

APPENDIX A. XML POLICY FILE..55

APPENDIX B. KEYNOTE POLICY TEMPLATE ..57

APPENDIX D. ISAKMPD.POLICY FILE ..67

LIST OF REFERENCES..71

INITIAL DISTRIBUTION LIST ...73

 ix

LIST OF FIGURES

Figure 1. VPN vs. IPsec Security Mechanisms (From: Agar, Chris December 2001)5
Figure 2. ESP- Protected IP Packet. ..6
Figure 3. AH-Protected IP Packet. (After: Doraswamy, Naganand and Harkins,

Dan, 1999, 51)..6
Figure 4. IPsec Transport and Tunnel Modes. (After: Doraswamy, Naganand and

Harkins, Dan, 1999, 57-80)..8
Figure 5. Transport Adjacency. (After: Leiseboer, John, 2001)9
Figure 6. Iterated Tunneling. (After: Leiseboer, John, 2001) ...10
Figure 7. KeyNote Process (After Agar, Chris December 2001)....................................14
Figure 8. Quality of Security Service (QoSS). (From Agar, Chris December 2001)16
Figure 9. Mapping Security Policies to Security Attributes. (From Agar, Chris

December 2001)...19
Figure 10. Document validation with Schemas...29
Figure 11. Tree Layout of a Condition Statement...34
Figure 12. XSL Transformation of XML Policy Data in the User Policy File.40
Figure 13. Managing Ports in the Admin Module...42
Figure 14. Admin Mode Settings for Security Level and Op Modes................................42
Figure 15. Encryption Settings For Individual Ports...43
Figure 16. Authentication Settings for AH Mode ...43
Figure 17. XSL Transformation of the Policy File ...45
Figure 18. Editing and Validation of XML Policy File Using XML Spy.........................46
Figure 19. Schema Design View of the XML Policy Document......................................47

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

I would like to thank Dr Cynthia Irvine for introducing me to the subject and

generating interest in the field of computer security. Her flexible approaches to the

problem provided me the opportunity to be creative and achieve the desired output in my

own timeframe. I sincerely thank Tim Levin for his constant support and thought

provoking discussions on the topic. I am grateful to David Schiffett for his patience in

verifying the program outputs. I thank Capt Jason Schwartz for his contribution to the

GUI design and his invaluable inputs. My little son, Harish deserves credit for waking me

up at odd hours at night resulting in bright new ideas. I thank him for bearing with my

absence at many a play session. I am ever grateful to my wonderful and beautiful wife,

Viji, who provided me with continued support and love during the performance of this

research. Without her support, none of my accomplishments would have been possible.

Last but not the least I wish to thank my organization, Indian Army for sponsoring me for

this course and the faculty and staff at the Naval Postgraduate School for helping me

successfully complete the curriculum.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PURPOSE

Network Protocols such as IPsec and trust management systems like Keynote

provide mechanisms to secure computer-to-computer communications. These tools

enable the user to use various encryption and authentication mechanisms to ensure

confidentiality, integrity and non-repudiation of communications. The trust management

system, Keynote specifies a language for describing actions, which are operations with

security consequences that are to be controlled by the system. The language also provides

the syntax for specifying the application policies, which govern the actions that the

principals1 are authorized to perform. To translate a desired organizational security

policy into the Keynote specification language is however a daunting task due to the

technical complexity of the language. An incorrect specification of the security policy

might result in compromising the network security and is unacceptable. It is in this

context that the need for an alternative policy specification mechanism is felt. This

mechanism should enable the user to correctly specify the policy and also verify that the

specified policy is free of inconsistencies and contradictions. The purpose of this thesis is

to analyze, design and implement a policy editor interface that guides a user to specify

various attributes of the IPsec security policy. The program will automatically generate

the equivalent policy in the Keynote specification language. Alternate presentation

mechanisms will be studied to provide the user with an intuitive presentation and to

prevent inconsistencies and contradictions in the specified policy.

B. BACKGROUND

The increased dependence on computers for communication has enhanced the

importance of network security. The use of the inherently insecure Internet as the

medium for communicating sensitive material requires that the end users have

capabilities to ensure that the data transmitted is secure. Furthermore, network

administrators should have means to translate the desired organizational security policy

1 A Principal is an entity that is either the authorizer of an assertion or the target of such an assertion.
A Principal may be an arbitrary string or a cryptographic key that can be used to sign assertions.

2

into an automated security policy and have mechanisms to implement this policy over

their network.

IPsec extends the IP Protocol to enable security for TCP/IP communications.

IPsec provides both secrecy and integrity services. A wide variety of choices are

available when establishing protected communications across the network. The

appropriate choice and combination of secrecy and integrity mechanisms will depend

upon the “trust relationships” between the communicating entities. Those relationships

are constrained by the policy of each entity. Negotiation of policy and mechanisms takes

place in the context of the Internet Key Exchange (IKE) framework and the Internet

Security Association and Key Management Protocol (ISAKMP) (Maughan, Schertler,

Turner, Schneider, 1998). However, IKE and ISAKMPD do not provide a general

mechanism for managing and incorporating security policy. In order to ensure that IPSEC

consistently meets the local security policy needs of the user, a Trust Management

System is used to encode policy and support communications security negotiation and

management. (Thayer, Doraswamy and Glenn1998)

A trust management system unifies the elements of security policy, credentials,

access control, and authorization. Applications can use the Keynote trust management

system to verify, through the compliance checker, whether a requested policy addition or

change is authorized. (Blaze, Ioannidis, and Keromytis, Feb 2000)

IPsec implementation in open BSD utilizes a trust management system to manage

security according to policy. Quality of Security Service (QoSS) provides a means to

manage security services based on the requirements set by the user’s requests, the

system’s security policy, the availability of system resources and the network

environment. (Irvine and Levin, September 2000)

Dynamic parameterization of IPsec (Agar, December 2001) provides more

granularity in IPsec and provides flexibility to adjust security controls according to

changes in threat conditions, critical time transmissions, and network congestion/traffic.

This makes IPsec a QoSS mechanism.

All the above mechanisms depend on having in place a correct security policy

specified in the Keynote specification language. For any practical real life network

3

operations specifying such a dynamic and granular policy is an insurmountable task due

to the syntactic complexity of the KeyNote language and the inherent complexity of the

policy logic involved. An XML-based specification of the policy should provide the

desired flexibility, be easy to use and provide an interface for administration of the

security policy. This would provide an abstraction to the KeyNote language and enable

users to derive the power of IPsec and KeyNote in managing network security.

C. EXPECTED BENEFITS OF THE RESEARCH

By providing a policy management toolkit it would be possible to unleash the

power of IPsec usage and would enable government and military security systems to

automate security service adjustments according to dynamic environmental parameter

settings, such as INFOCON and THREATCON. The use of XML in such an effort will

enable us to use all the available XML tools for ensuring consistency and also utilize the

flexibility and compatibility that XML provides. The power of XML security can also be

harnessed to enhance the overall security of the communicating systems. An easy to use

interface will ensure its use and the correctness will give the desired confidence in the

overall security implementation of the network. The exploration of XML will also open

doors to further research in other areas of computer security that will benefit from it.

D. RESEARCH OBJECTIVES

The objectives of this research are three fold:

o Study the Keynote trust management system and IPsec, and explore available

XML technologies.

o Design and develop a policy editor interface to capture the security policy

requirements of a user, check for inconsistencies and transform the stated

policy into the Keynote specification language.

o Design and develop a method of incorporating the use of XML to enhance the

flexibility, maintainability and interoperability of the policy specifications.

4

E. LAYOUT OF THE THESIS

The thesis will be organized as follows:

o Chapter II Previous Work – This chapter consists of a brief survey of related

research.

o Chapter III XML and Keynote policy specification language – a review of

Keynote language and its specification for the QOSS implementation in

OpenBSD 2.8. Relevant XML technologies and its application to the problem

domain will be reviewed.

o Chapter IV Design and Implementation – the design philosophy of the toolkit,

the considerations and overall architecture will be discussed in detail.

Implementation issues of the components will be highlighted in this chapter.

o Chapter V Research Summary and Future Work – This chapter will

summarize the research done and will end with a discussion of future work.

5

II. PREVIOUS WORK

A. IPSEC

The popularity of the Transfer Control Protocol/ Internet Protocol (TCP/IP) and

the growing use of computer networks for governmental and business made these

protocols vulnerable to scrutiny, attacks and misuse. TCP/IP, which was designed to

provide packet based communications over unreliable telephone networks, was not

designed for providing secure communications. The first attempt to provide security

involved a simple “protect-all” approach to network security i.e. the Virtual Private

Networks (VPN). IPsec was then developed to address security vulnerabilities inherent in

the Internet Protocol (IP), by defining a more flexible security mechanism for sending

data across an insecure medium. IPsec introduced the ability to provide a range of

security services ultimately defined by a security policy (See Figure 1). The security

policy defines specific security services for each packet, according to packet

characteristics such as source and destination addresses.

IPsec

R
an

ge
 o

f S
ec

ur
ity

VPN

N
o

Se
cu

rit
y

Se
cu

rit
y

Figure 1. VPN vs. IPsec Security Mechanisms

(From: Agar, Chris December 2001)

IPsec provides security services at the IP layer by enabling a system to select

required security protocols, determine the algorithm(s) to use for the service(s), and put

6

in place any cryptographic keys required to support the requested services. There are two

extension headers that follow the main IP header and which incorporate the security

features of IPsec. The extension header for authentication is known as the Authentication

Header (AH) and that for encryption is known as the Encapsulating Security Payload

(ESP) header. The difference between the AH and the authentication within ESP is

essentially the amount of content of the packet and headers that is authenticated. Figure 2

and Figure 3 depict the coverage of ESP and AH respectively.

IP HEADER

DATA

ESP TRAILER

ESP HEADER

ENCRYPTED

AUTHENICATED

ESP- Protected IP Packet

Figure 2. ESP- Protected IP Packet.

(After: Doraswamy, Naganand and Harkins, Dan, 1999, 49)

IP HEADER

DATA

AH TRAILER

AH HEADER AUTHENTICATED

AH- Protected IP Packet

Figure 3. AH-Protected IP Packet.

 (After: Doraswamy, Naganand and Harkins, Dan, 1999, 51)

7

IPsec was designed to provide an efficient and effective cryptographic security

mechanism for IP version 4 and IP version 6. The mechanism provides the following

services: access control, connectionless integrity, data origin authentication, protection

against replays,(a form of partial sequence integrity), confidentiality (encryption), and

limited traffic flow confidentiality. These services are applied at the IP layer, providing

security for IP and/or upper layer protocols. (Kent, S and Atkinson, R, 1998) The

cryptographic algorithms are applied in accordance with system security policies that are

defined within IPsec. IPsec can be used on a variety of system architecture models: host-

to-host, gateway-to-gateway and gateway-to-host/host-to-gateway. (Doraswamy,

Naganand and Harkins, Dan, 1999, 57-79).

1. Security Associations

A key concept that appears in both the authentication and confidentiality

mechanisms for IP is the Security Association (SA). An association is a one-way

relationship between the sender and a receiver that affords security services to the traffic

carried on it. If a peer relationship is needed for two-way secure exchange, then two

security associations are required. A Security Association is uniquely defined by three

parameters:

o Security Parameters Index (SPI),

o IP destination address, and

o Security protocol identifier.

2. SA Selectors

IPsec provides the user with considerable flexibility in the way in which IPsec

services are applied to IP traffic. SAs can be combined in a number of ways to yield the

desired security configuration. Furthermore, IPsec provides a high degree of granularity

in discriminating between traffic that is afforded IPsec protection and traffic that is

allowed to bypass IPsec, in the former case relating IP traffic to specific SAs.

The means by which IP traffic is related to specific SAs (or no SAs in the case of

traffic allowed to bypass IPsec) is the nominal Security Policy Database (SPD). Each

SPD entry is defined by a set of IP and upper-layer protocol field values, called selectors.

8

In effect, these selectors are used to filter outgoing and incoming traffic in order to map it

into a particular SA. Selectors are of many types for e.g. destination IP address, transport

layer protocol, IP Sec protocol (AH or ESP or AH/ESP), source and destination ports etc.

3. Transport Mode and Tunnel Modes

Data

TCP/UDP HDR

DATA

TCP/UDP HEADER

IP HEADER

IPSEC HEADER

DATA

TCP/UDP HEADER

IP HEADER

IPSEC HEADER

TUNNEL IP HEADER

Transport Mode Tunnel Mode

Figure 4. IPsec Transport and Tunnel Modes.

(After: Doraswamy, Naganand and Harkins, Dan, 1999, 57-80)

Both AH and ESP support two modes of use: transport and tunnel modes depicted

in Figure 4 above. Transport mode provides protection primarily for upper layer

protocols. Its protection extends to the payload of an IP packet. Typically, transport mode

is used for end-to-end communication between two hosts. (e.g., a client and a server, or

two workstations). Tunnel mode on the other hand provides protection to the entire IP

packet. To achieve this, after the AH or ESP fields are added to the IP packet, the entire

packet plus security fields is treated as the payload of new ‘outer’ IP packet with a new

outer IP header. The entire original, or inner, packet travels through a ‘tunnel’ from one

point of an IP network to another. Tunnel mode is most commonly used when one or

both ends of an SA is a security gateway, such as a firewall or router that implements

IPsec.

4. Combining Security Associations

An individual SA can specify either the AH or ESP protocol but not both.

Sometimes a particular traffic flow will call for services provided by both AH and ESP.

9

Further, a particular traffic flow may require IPsec services between hosts and, for that

same flow, separate services between security gateways, such as firewalls. In all of these

cases, multiple SAs must be employed for the same traffic flow to achieve the desired

IPsec services. The term security association bundle refers to a sequence of SAs through

which traffic must be processed to provide a desired set of IPsec services. The SAs in a

bundle may terminate at different end points or at the same endpoints. Security

associations can be combined into bundles in two ways:

a. Transport Adjacency:

Security
Gateway

A

Security
Gateway

B

Host A Host B

ESP Security

AH Security

IP
Header AH ESP

TCP
Header Data

Internet

Figure 5. Transport Adjacency.

(After: Leiseboer, John, 2001)

Here more than one security protocol is applied to the same IP packet,

without invoking tunneling (Refer to Figure 5). This approach to combining AH and ESP

allows for only one level of combination. The advantage of this approach over simply

using an ESP SA with the ESP authentication option is that the authentication covers

more fields, including the source and destination IP addresses. The disadvantage is the

overhead of two SAs versus one SA.

b. Iterated Tunneling:

Multiple layers of security protocols are effected through IP tunneling

(Refer to Figure 6). This approach allows multiple levels of nesting, since each tunnel can

originate or terminate at a different IPsec site along the path. For e.g. having a transport

10

SA between two hosts could combine the SAs to travel part of the way through a tunnel

SA between secure gateways.

Security
Gateway

A

Security
Gateway

B

Host A Host B

AH Security

ESP Security

IP
Header AH ESP

TCP
Header Data

Internet

IP
Header

Figure 6. Iterated Tunneling. (After: Leiseboer, John, 2001)

Four basic combinations of SAs are possible:

o Security provided between end systems that implement IPsec.

o Security is provided only between gateways (routers, firewalls, etc.)

and no hosts implement IPsec.

o Security provided both at gateways and hosts.

o Security between remote host and a local gateway.

5. Key Management

The key management portion of IPsec involves the determination and distribution

of secret keys. A typical requirement is four keys for communication between two

applications: transmit and receive pairs for both AH and ESP. The two types of key

management are manual and automated.

The Internet Security Association and Key Management Protocol, (ISAKMP)

provides a framework for automated Internet key management and provides the specific

protocol support, including formats for negotiation of security attributes. ISAKMP by

itself does not dictate a specific key exchange algorithm; rather ISAKMP consists of a set

11

of message types that enable the use of a variety of key exchange algorithms. IKE,

adapted from Oakley, is the specific key exchange algorithm mandated for use with the

initial version of ISAKMP. ISAKMP defines procedures and packet formats to establish,

negotiate, modify and delete security associations.

B. KEYNOTE TRUST MANAGEMENT SYSTEM

OpenBSD IPsec incorporates the concept of trust and security policy management

by implementing KeyNote. The research performed in this thesis utilizes the OpenBSD

IPsec mechanism as a model for discussion and implementation. Figure 7 depicts the

KeyNote trust management process.

 Trust management, is a unified approach to specifying and interpreting security

policies, assertions2, credentials3, and relationships; it allows direct authorization of

security-critical actions. A trust-management system provides standard, general-purpose

mechanisms for both local and remote specification of application security policies and

credentials. Trust-management credentials describe a specific delegation of trust and

subsume the role of public key certificates; unlike traditional certificates, which bind

keys to names, credentials can bind keys directly to the authorization to perform specific

tasks. (From Blaze, Matt, Feigenbaum, Joan, and Keromytis, Angelos D., RFC 2704)

A trust-management system has five basic components:

o A language for describing `actions', which are operations with security

consequences that are to be controlled by the system.

o A mechanism for identifying `principals', which are entities that can be

authorized to perform actions.

o A language for specifying application `policies', which govern the actions that

principals are authorized to perform.

2 An assertion is a statement binding together an authorizing principal, an authorized principal(s) and

a set of conditions.
3 Credentials are similar to assertions, but each credential must be signed by the authorizer. Thus the

authorizing principal of a credential must be a public key.

12

o A language for specifying `credentials', which allow principals to delegate

authorization to other principals.

o A `compliance checker', which provides a service to applications for

determining how an action requested by principals should be handled, given a

policy and a set of credentials.

The trust-management approach has a number of advantages over other

mechanisms for specifying and controlling authorization, especially when security policy

is distributed over a network or is otherwise decentralized.

Trust management unifies the notions of security policy, credentials, access

control, and authorization. An application that uses a trust-management system can

simply ask the compliance checker whether a requested action should be allowed.

Furthermore, policies and credentials are written in standard languages that are shared by

all trust-managed applications; the security configuration mechanism for one application

carries exactly the same syntactic and semantic structure as that of another, even when

the semantics of the applications themselves are quite different.

Trust-management policies are easy to distribute across networks, helping to

avoid the need for application-specific distributed policy configuration mechanisms,

access control lists, and certificate parsers and interpreters.

KeyNote is a simple and flexible trust-management system designed to work well

for a variety of large- and small- scale Internet-based applications. It provides a single,

unified language for both local policies and credentials. KeyNote policies and credentials,

called `assertions’; contain predicates that describe the trusted actions permitted by the

holders of specific public keys. KeyNote assertions are essentially small, highly

structured programs. A signed assertion, which can be sent over an un-trusted network, is

also called a `credential assertion'. Credential assertions, which also serve the role of

certificates, have the same syntax as policy assertions but are also signed by the principal

delegating the trust.

13

In KeyNote:

o Actions are specified as a collection of name-value pairs. For instance a name

value pair could be app_dom = ”email”. These are called as action attributes

and a query is made with the action attributes and their associated values.

o Principal names can be any convenient string and can directly represent

cryptographic public keys.

o The same language is used for both policies and credentials.

o The policy and credential language is concise, highly expressive, human

readable, and compatible with a variety of storage and transmission media,

including electronic mail.

o The compliance checker returns an application-configured `policy compliance

value' that describes how a request should be handled by the application.

Policy compliance values are always derived from policy and credentials,

facilitating analysis of KeyNote-based systems.

o Compliance checking is efficient enough for high-performance and real-time

applications.

Despite these advantages, the KeyNote Policy language has some technical

challenges regarding understandability of complex policies, which are described in later

sections.

14

Keynote

IKE SA protected
Negotiations
communications

Pass proposed
IPsec SA

KeyNote is queried using
assertion syntax to determine
if proposed SA is valid IAW
security policy

Security
Policy

IKE Daemon

KeyNote
Interface

Figure 7. KeyNote Process (After Agar, Chris December 2001)

C. QUALITY OF SECURITY SERVICE (QOSS)

IPsec provides a high degree of granularity in discriminating between traffic that

is afforded IPsec protection and traffic that is allowed to bypass IPsec. Further use of a

trust management system such as Keynote enables an application to simply ask the

compliance checker whether a requested action should be allowed. Thus if we specify a

granular security policy as permissible by IPsec and use Keynote to verify a request

based on the policy, we would be able to modulate the security settings of applications

dynamically in accordance with the security and performance requirements of the

applications in particular, and networks as a whole. This is the essence of ‘Quality of

Security Service’ (QoSS).

In the Quality of Service (QoS) model, resource allocation is adjusted to meet

user requests under changing network environment and resource availability conditions.

Similarly, QoSS, see Figure 8, provides a mechanism to manage security services to meet

requirements set by the user‘s requests, system’s security policy, availability of system

resources and network environment. (Irvine and Levin, September 2000)

Similar to the modulation of resources to support QoS, security services can be

defined in terms of user and system requirements, network environment factors and

available resources. Without a range of security services, a user is faced with the rigid

15

and limited choice of “all or nothing” for each security service. Historically, security

services have been provided in such a static manner. (Spryropoulou, Agar, Levin and

Irvine January 2002) Quality of Security Service (QoSS) provides a more flexible

solution to the provision of security services. The security resource manager and/or the

security system can adjust security service to meet user requirements, system security

policy and network environment constraints. (Irvine and Levin, September 2000)

Security systems and managers can maintain overall control of the security

mechanism through QoSS “system security policies.” These policies dominate the

individual “user security requirements.” Specifically, they define all authorized

operations per user, system, application, etc.

QoSS has several mechanisms to handle security variablity. A security variance

for a particular policy exists when that policy may be enforced utilizing a specific range

of security attributes. Therefore, based on the policy parameters, the attributes used to

enforce the security policy may differ according to selection criteria such as “network

mode”. Fixed requirements are used to set minimum level acceptable security standards.

A range of security settings meeting or exceeding this minimum level can be provided.

For example a system may utilize SHA as a minimum level authentication algorithm for

all message handling. Users or applications could apply further granularity in support of

confidentiality to messages by selecting an encryption algorithm from a provided range.

Other examples of variable security attributes that may be used are: assurance level, key

length or security attribute expiration date stamp. (Irvine and Levin September 2000)

16

Quality of Security Service (QoSS)

Negotiated range of secure communication attributesUser A User B

Security Resource Manager

Secure Communication
Negotiation Secure Communication

Negotiation

Figure 8. Quality of Security Service (QoSS). (From Agar, Chris December 2001)

1. Managing Quality of Security Service (QoSS)

Inevitably, security mechanisms result in a cost to the user, system and resources.

Whether in the form bandwidth, algorithm processing time, overhead, or funds, the cost

of security is a challenging concern to resource managers. A “costing framework” may

be used to map security service resource consumption to available resources; ultimately

enabling a management system to efficiently and effectively handle security service

costs.

Security services, as previously described, may utilize high level services and

consume lower level resources in a system. High-level services include, for example,

non-repudiation, auditing, authentication, encryption, or intrusion detection. Low-level

resources include memory, bandwidth, or processor time. Further, each security service

will require a governing policy, consisting of specific rules that determine how and when

to use the service. Therefore each network task associated with QoSS can be mapped to a

vector of security requirements directly associated with the security services the task

requires. (NPS-CS-02-001, January 2002)

a. Dynamic Parameters

Government and DOD organizations utilize a variety of dynamic

parameters to define a predefined response of specific actions according to policy.

17

Examples include INFOCON and THREATCON levels. In order for a security

mechanism to be fully functional within the DOD and Government infrastructure, it has

to be able to incorporate the dynamic parameters into the security setting decision-

making process. A change in an INFOCON or THREATCON level should have an

immediate effect on attributes and settings in a security mechanism. By introducing a

dynamic mechanism, a system can modulate its security settings in response to these

dynamic parameters. Security level and network mode, defined in the following sections,

have been chosen as two abstract dynamic parameters that govern changes to security

attributes as defined in the organization’s security policy. (NPS-CS-02-001, January

2002)

By developing and implementing a security mechanism that can

dynamically adjust in accordance with a change to network modes and/or security levels,

the users and managers do not have to be concerned with the fine granularity and low-

level complexity involved in adjusting and selecting appropriate security attributes, such

as keylengths and cryptographic algorithms.

b. User Choices for Security Levels

Security classification levels are a common metric used in the government

and DOD to distinguish authorization for classified information. Common levels include

Top Secret, Secret, Classified and Unclassified. Each of these levels correspond to

different governing policies and requirements associated with the threat to national

security by the disclosure of information to adversaries. Likewise, security selection

levels, as defined here for proof of concept, represent an increasing requirement for

stronger security (e.g. encryption and authentication algorithms).

Network security policies may utilize a range of maximum and minimum-

security levels for each variant security service. Minimum-security levels set the lowest

acceptable security attributes and maximum-security levels establish a ceiling on the use

of available security resources. Intersections of policies require further granularity in

security settings to satisfy all governing users and systems. A user may also desire to

select a higher level of security than the predefined minimum. (NPS-CS-02-001, January

2002)

18

A user or application, however, may quickly become overwhelmed with

the security setting details, potentially resulting in degraded security or performance. By

developing security definitions that encompass detailed security settings required by

users or applications, the complexity of the selection process for the security settings can

be simplified to a reasonable level. One approach would involve the use of the following

Network Security levels: high, medium and low. (NPS-CS-02-001, January 2002)

‘High’ security level would utilize strong levels of security attributes, medium level,

moderate level of security attributes, and low level, low to no security attributes.

By implementing this approach the system security resource manager or

security engineer is responsible for presetting security variables and ranges in accordance

with choices offered to users or applications. A mapping of allowable security settings to

security levels, providing a range of selection or specific values, is required to properly

enforce the system security policy. (NPS-CS-02-001, January 2002)

c. The Notion of Network Modes

Networks exist in a variety of states, providing users and systems with

varying levels of service. On one occasion the network may experience heavy levels of

traffic resulting in a poor performance. At other times the network may be limited in the

availability of resources due to maintenance, and at other times the network may be

performing at its optimum level. To fully incorporate the performance and reliability of

the network into a Quality of Security Service mechanism, the notion of network modes

is introduced.

There are numerous situations in which a network security policy will be

required to dynamically change to properly address the current operational threats and

needs, as well as the availability of resources and network performance. In the midst of a

highly sensitive intelligence operation transmitted reports will require the highest

possible security to ensure the information and the sources remain protected. In another

scenario, an enterprise confronted with a serious emergency that requires the fastest

possible transmissions may not be concerned with transmission protection. (NPS-CS-02-

001, January 2002) Therefore a requirement exists for a dynamic security mechanism

that can appropriately adjust to meet the needs of the system, users or applications. One

19

approach is to use the following network modes: normal, impacted, and crisis. Normal

mode is defined as ordinary operating conditions with normal traffic load and no

heightened threat conditions. Impacted mode may be defined when the network/system is

experiencing high levels of traffic and therefore certain security selection may not be

available due to efficiency constraints. Emergency mode may be defined as a situation

that requires the highest level of security or the lowest level dependent on the situation

and policy. (NPS-CS-02-001, January 2002)

d. Mapping Abstract Parameters to Security Mechanism

A mapping of abstract dynamic parameters to resident security

mechanisms is required to properly enforce policy decisions. For example, network

modes may be mapped to security level ranges and ultimately to security attributes and

settings.

High

MediumImpacted

Low

High

Medium

Crisis Low

High

MediumNormal
Low

Security AttributesSecurity LevelNetwork Mode

Broad Fine
System Admin/

Security ExpertsUsers

ENCRYPTION: DES
AUTHENTICATION: MD5

Granularity

ENCRYPTION: NONE
AUTHENTICATION: NONE

ENCRYPTION: NONE
AUTHENTICATION: NONE

ENCRYPTION: 3DES
AUTHENTICATION: MD5

ENCRYPTION: DES
AUTHENTICATION: MD5

ENCRYPTION: 3DES
AUTHENTICATION: MD5
ENCRYPTION:3 DES
AUTHENTICATION: SHA
ENCRYPTION: AES
AUTHENTICATION: SHA

ENCRYPTION: NONE
AUTHENTICATION: MD5

Figure 9. Mapping Security Policies to Security Attributes.

(From Agar, Chris December 2001)

The security resource manager and security engineer would define the

network modes and security levels to provide the users and applications with appropriate

20

security service as translated into QoSS choices. Once defined, the complexity of the

security mechanism and security attribute selection is transparent to the user. (See Figure

9)

2. Implementation Issues

Quality of Security Service (QoSS) provides us with a mechanism to modulate the

security settings and enhance performance based on both necessity (e.g. threat) and

resource availability. It also provides us with a tool to ensure that the minimum-security

requirements of applications and the network as proposed in the security policy is not

violated. Hence defining an adaptive security policy based on network threat and

performance conditions is the key to optimal and secure utilization of the network

resources. Keynote provides one such policy specification language but the complexity

of the language makes its practical implementation extremely difficult. An abstraction for

this language is therefore felt necessary. It would use the power of Keynote for formal

compliance checking and at the same time be easy to use and administer. This is dealt

with in the following chapters in detail.

21

III. XML AND KEYNOTE POLICY LANGUAGE

A. KEYNOTE POLICY SPECIFICATION LANGUAGE

1. Introduction

The syntax and semantics of the Keynote language is described in detail in RFC

2704. (Blaze Matt, Feigenbaum, Joan, Ioannidis, John, and Keromytis, Angelos D). In

this section a brief overview of the language and the specific parts that need emphasis

will be highlighted. The language is used for specifying application ‘policies,’ which

govern the actions that principals (entities that can be authorized to perform actions) are

authorized to perform. The language provides the semantics for describing ‘actions,’

which are operations with security consequences that are to be controlled by the system.

It is also used for specifying ‘credentials’, which allow principals to delegate

authorization to other principals.

2. Keynote Assertion Syntax

a. Basic Structure

Keynote assertions are divided into sections, called ‘fields’ that serve

various semantic functions. Each field starts with an identifying label at the beginning of

a line, followed by the “:” character and the fields contents. There can be at most one

field per line.

A field may be continued over more than one line by indenting subsequent

lines with at least one ASCII SPACE or TAB character. Whitespace (a SPACE, TAB, or

NEWLINE character) separates tokens but is otherwise ignored outside of indentation

and quoted strings.

One mandatory field is required in all assertions:

• Authorizer

Six optional fields may also appear:

• Comment

• Conditions

22

• KeyNote-Version

• Licensees

• Local-Constants

• Signature

All field names are case-insensitive. The "KeyNote-Version" field, if

present, appears first. The "Signature" field, if present, appears last. Otherwise, fields

may appear in any order. Each field may appear at most once in any assertion. Blank

lines are not permitted in assertions. Multiple assertions are stored in a file (e.g., in

application policy configurations), therefore, they can be separated from one another

unambiguously by the use of blank lines between them.

For the most part it is the conditions field that has many variables and a

typical policy file will have a detailed conditions section. We shall examine the

conditions field in detail as it applies to our application.

b. Conditions Field

The field gives the ‘conditions’ under which the Authorizer4 trusts the

Licensees5 to perform an action. The exact semantics of the field is defined in RFC

2704. However parts of the language pertinent to our application are explained below.

 Security attributes reside in the conditions section and are expressed in

the form of logical statements. The conditions section’s syntax is similar to that of a

programming language “if statement”. The section is usually broken into sub statements

by using &&, ||, and parenthesis to construct logical conditions. For example the

following phrase describes two security proposals supporting Telnet services

(service_port= 23) using ESP with 3DES for encryption and finger services

(service_port=79) using AH with SHA for authentication:

 (local_filter_port == “23” &&

4 The Authorizer identifies the Principal issuing the assertion.
5 The Licensees identifies the principals authorized by the assertion. More than one principal can be authorized,

and authorization can be distributed across several principals through the use of `and' and threshold constructs.

23

esp_present == "yes" &&

 esp_enc_alg == "3des") ||

 (local_filter_port == “79” &&

ah_present == "yes" &&

 ah_auth_alg == "sha") -> “true”;

3. Keynote Policy File

A simple policy file may contain very few elements. For instance we consider an

hypothetical application called “SPEND” wherein the authority is delegated authority to

RSA key dab212. Further a condition is specified to permit delegation only when amount

given in the "dollars" attribute is less than 10000. The policy would then look as under:

Authorizer: "POLICY"
Licensees: "RSA:dab212" # the CFO's key
Conditions:(app_domain=="SPEND")&&(@dollars

< 10000);

A more detailed policy is listed in Appendix ‘D’.

4. Keynote Policy File with Quality of Service Parameters.

Using the example in section 2(b) above, with security levels “high” and “low”

and network modes “normal” and “impacted”, the condition phrase is expanded. (From

Agar, December 2001)

KeyNote-Version: 2

Comment: Policy file for Network Modes and Security Levels

Authorizer: "POLICY"

Licensees: "passphrase:mekmitasdigoat"

Conditions: ((app_domain == "IPsec policy") && (

((network_mode = “normal” &&

((security_level = “high” &&

 ((local_filter_port == “23” &&

esp_present == "yes" &&

esp_enc_alg == "3des") ||

 (local_filter_port == “79” &&

24

ah_present == "yes" &&

 ah_auth_alg == "sha"))) ||

((security_level = “low” &&

 ((local_filter_port == “23” &&

esp_present == "yes" &&

esp_enc_alg == "des") ||

 (local_filter_port == “79” &&

ah_present == "yes" &&

 ah_auth_alg == "des-mac")))) ||

(network_mode = “impacted” &&

((security_level = “high” &&

 ((local_filter_port == “23” &&

esp_present == "yes" &&

esp_enc_alg == "aes") ||

 (local_filter_port == “79” &&

ah_present == "yes" &&

 ah_auth_alg == "sha"))) ||

((security_level = “low” &&

 ((local_filter_port == “23” &&

esp_present == "yes" &&

esp_enc_alg == "3des") ||

 (local_filter_port == “79” &&

ah_present == "yes" &&

 ah_auth_alg == "sha-md5")))) -> “true”;

As we notice the complexity of the language increases exponentially as we add

more ports and parameters to it. The nesting of parenthesis to multiple levels makes

writing a syntactically correct policy file almost impossible. In the following section,

XML is analyzed to see if the technology could be used to make the task of specifying

the Keynote policy file practical.

25

B. XML

1. Introduction

Extensible Markup Language (XML) is a rapidly maturing technology with

powerful real-world applications, particularly for the management, display and

organization of data. XML is a technology concerned with the description and structuring

of data. It is a subset of Standard Generalized Markup Language (SGML), with the same

goals, but with much less complexity. XML is not a language but a standard for creating

languages that meet the XML criteria. It describes a syntax that you use to create your

own languages (David Hunter, Kurt Cagle, Chris Dix, Roger Kovack, Jonathan Pinnock,

Jeff Rafter February 2002).

Data is separated from presentation in XML. XML structures the data, while

style sheets format the data presentation. That makes it easier to use the data for multiple

purposes. The same stylesheet can be used with multiple documents to create a similar

appearance among them. Or alternatively multiple stylesheets can be applied to an XML

document to provide different forms of presentation of the data. There are a variety of

languages that can be used to create stylesheets such as Extensible Stylesheet Language

Transformations (XSLT).

XML solves the problem that has been the focus of attention for many years now,

data portability and software maintenance. Programmers have been structuring their data

in an infinite variety of ways, and with every new way of structuring data comes much

experimentation and testing to get it just right. If the data format changes, the

methodologies to manipulate it also have to change, and the testing and tweaking has to

begin again. The cycle of software maintenance will start all over again. With XML,

there is a standardized way to structure the data and to extract the information we need.

The extensibility of the language permits us to make changes, as we need without having

to tweak adjust the code that extracts information from the file.

2. XML Parsers

XML documents have to be ‘well-formed’. Well-formed XML is XML that meets

certain syntactical rules outlined in the XML 1.0 specification. Describing the documents

26

following these rules enables general-purpose XML programs called XML parsers to

access the data from the document. XML parsers are programs that are able to read XML

syntax and extract the tag names and the values i.e. the attributes and their values. There

are two types of parsers, validating and non-validating parsers. Validating parsers in

addition to parsing the data, also validate the data against the specified XML Schema or

DTD. This ensures that the structure of the XML document as well as the data within it

adheres to a predefined agreement or specification.

There are a wide variety of well tested, industry strength parsers that we can use

within our applications to access XML data. Thus applications designed to handle XML

can inherit the properties of a well-tested parser and would not need to write all the code

from scratch. Thus changes in the data format, as long as the data follows the XML

standards, will not affect the application code. The parsers handle that for us. Even the

language in which XML is written does not matter to the parsers. Thus if we create an

XML document we can be sure that any XML parser will be able to retrieve information

from that document, even if we can’t guarantee that any application will be able to

understand what that information means. Examples of parsers include, Microsoft XML

Parser (MSXML), Apache Xerces parser, IBM’s Xml4j parser, DOM, SAX etc.

3. XML DTDs

The need to validate documents against a vocabulary led the creators of XML to

include a method of checking validity in the XML recommendation. A document is valid

if its XML content complies with a definition of allowable elements, attributes and other

document pieces. By utilizing special ‘Document Type Definition’ syntaxes or DTDs,

you can check the content of a document type with a special parser. The Document Type

Definition (DTD) validation format has been used for many years to validate SGML and

XML documents. The XML recommendation separates parsers into two categories –

validating and non-validating. Validating Parsers, according to the recommendation, must

implement validity checking using DTDs., Therefore if we have a validating parser, we

can remove the content checking code from our application and depend on the external

processor. For instance you may use an XML software tool such as ‘XML-Spy’ to

perform this check for you. Thus by utilizing DTDs, we can easily validate our XML

documents against a defined vocabulary of elements and attributes. As the use of XML

27

and DTDs increased, some of the limitations of DTDs surfaced. Though these limitations

restrict their use, DTDs are still useful for various applications. Some of the limitations of

DTDs are:

o DTDs were developed long before XML became a popular data transfer

format. As a result, they do not follow the XML rules as XML schemas (to be

described later) do.

o Support for XML Namespaces: Namespaces are used frequently in different

types of XML documents to prevent naming conflicts. This allows elements

that are used in different contexts to be combined without mixing up the

meaning of the elements. By definition, an ‘XML namespace’ is a collection

of names, identified by a Uniform Resource Identifier (URI) reference

[RFC2396], which are used in XML documents as element types and attribute

names. DTDs have no concept of namespaces. In fact, most validating XML

parsers allow you to "turn off" namespaces while validating an XML

document against a DTD. XML schemas, on the other hand, fully support

namespaces and do so well.

o Poor data typing: DTDs have no real concept of data types. In fact, when you

define an element in a DTD that contains a text node, you can only specify

that the text node is Parsed Character Data (PCDATA). You cannot specify

that the text must be a decimal, integer, date, and so on. Although DTD

attribute definitions do contain a few more built-in data types such as ID,

IDREF, and NMTOKEN, they still do not allow for validating against data

types found in many relational databases. In contrast, XML schemas provide

robust support for data types and also allow data types to be extended and

customized.

o Lack of the property of inheritance.

However, with the release of XML schemas, a more powerful mechanism for

validating XML documents is now available.

28

4. XML Schemas move to next page

A Schema is the XML construct used to represent the data elements, attributes,

and their relationships as defined in the data model. By definition, a DTD and a schema

are very similar. However, DTDs usually define simple, abstract text relationships, while

schemas define more complex and concrete data and application relationships. A DTD

doesn't use a hierarchical formation, while a schema uses a hierarchical structure to

indicate relationships. XML Schema definitions are also commonly referred to as XSD.

Some of the benefits of XML Schemas are:

o XML Schemas are created using XML, not an alternative SGML syntax.

o XML Schemas fully support the Namespace Recommendation. The goal of

the W3C XML namespaces recommendation was to create a mechanism in

which elements and attributes within an XML document that were from

different markup vocabularies could be unambiguously identified and

combined without processing problems ensuing. The XML namespaces

recommendation provided a method for partitioning various items within an

XML document based on processing requirements without placing undue

restrictions on how these items should be named. (Namespaces in XML, Jan

1999).

o XML Schemas allow you to validate text element content based on built-in

and user-defined data types.

o XML Schemas allow you to more easily create complex and reusable content

models.

o W3C XML Schema borrows a number of concepts from object oriented

programming including the notions of abstract types, type substitutions, and

polymorphism. Abstract elements and substitution groups allow schema

authors to create or utilize schemas which define generic base types and

extend these types without affecting the original schema.

Data types in an XML Schema definition are of two broad categories: simple and

complex. Elements that may contain attributes or other elements are ‘complexTypes’,

29

Attribute values and elements that contain only text content are ‘simpleTypes’. More

commonly used simpleTypes, such as ‘int’, ‘float’ etc are built into XML Schemas, Data

typing thus provides a rigid control on the input data. An XML document that adheres to

a particular XML Schema is an XML Schema ‘instance’ document. Validating a

document against an XML Schema requires the use of a special parser (Refer Figure 10).

The XML Schema Recommendation calls these parsers ‘schema validators’.

Figure 10. Document validation with Schemas.

5. XSLT

XML lets us structure our data in a hierarchical structure. This structure has some

rigid rules and following them enables us to use other XML tools to access and

manipulate the data without having to write code for it. However the structure may not

suit an application and we may need an alternative representation of the data for either

presentation purposes or for the purpose of manipulating it. Extensible Stylesheet

Language Transformations, XSLT, is a language which can transform XML documents

into any text-based format, XML or otherwise. It is a sub-component of a larger language

called XSL. XSL relies on finding parts of an XML document that match a series of

predefined templates, and then applying transformation and formatting rules to each

matched part. Thus once an XML document is created, XSLT can be used to transform

(XSD)

30

the document into whatever other format we wish- HTML for display on web sites, a

different XML-based structure for other applications, or even just regular text files.

XSL is used to create stylesheets. An XSL engine uses these stylesheets to

transform XML documents into other document types, and to format the output.

Stylesheets define the layout of the output document and the location of the data in the

source document. That is, “retrieve data from this place in the input document; make it

look like this in the output”. In XSL parlance, the input document is called the source

tree, and the output document the result tree.

XSLT is a declarative programming language as opposed to imperative

programming languages like C++ or Java. It has no side effects and it has mechanisms to

understand XML and HTML formats. XPATH is another W3C language specification

that is used in conjunction with XSLT that allows us to address specific parts of an XML

document and get the specific pieces of information that we need.

6. Advantages of XML for the Policy Specification Language

As described in Section IV we have a need to represent the intended IPsec policy

in a form separate from the native KeyNote representation. Some of the advantages that

would accrue by using XML are as follows:

a. Tools

Use of XML for specification of the KeyNote policy file lends itself to be

used with the freely available, verified, tested and user-friendly tools. These tools include

among others, XML editors, parsers, validators, translators etc. The availability of such

tools and the extensive use of XML in modern communication protocols and other

programs will enable users to manipulate XML files easily. Wide availability of such

tools will also help in creating and maintaining the policy files over diverse systems

without the need for an application specific editor.

b. Security

Interest in XML in recent years has resulted in huge investments in the

field of XML security. The XML security features such as XML encryption and

authentication will enhance the security of the policy file. This will also help, for

31

instance, in selectively ‘digitally signing’ parts of the policy file. Thus a person signing a

particular part of the policy file will only be responsible for the part he signed. Without

the XML format it would be possible only to sign the entire file after for instance adding

a part to it.

c. Platform Independence

It is possible to edit, maintain and distribute the XML policy file across

different OS platforms.

d. Single Data Multiple Presentation

 Once we represent the policy in an XML format it is possible to extract

relevant information and present it in different forms that are more intuitive and useful to

the administrator or the user. XSLT style sheets can be written and associated with the

policy file to generate different presentation formats. Apart from presenting it in a more

understandable and probably graphic format this will also help the administrator pin

down any inaccuracies/inconsistencies/contradictions in the policy file. Intelligent agents

can be written to audit the policy file and signal the administrator for errors in the policy

file.

e. Consistency and Accuracy

XML Schemas and/or DTDs can be used to validate the XML file to see if

it matches our specifications. Validating the policy file with a well-defined schema will

enable errors to be picked up. This will trap all errors without having to go through the

entire file manually. The use of generic schema generators and validators only makes this

an easier task. This will also enable users to verify policy files received across the

networks.

f. Extensible Format

An XML format will lend itself to extend the policy file to cater to new

requirements in the policy file that come up in the future. Additional tags can be defined

for elements and attributes as and when the need to incorporate them arises. This would

not require changes to the application code as long as the structure of the document is

maintained.

g. Ease of Use Move down

32

The hierarchical nature of XML layout results in an easy to use and easy

to manipulate format. It makes the file more modular and so easily understandable.

h Semantic Content Use:

The semantic content of the policy file enables future deployment of

intelligent agents or roaming agents that can read policy files and report problems, and

that can resolve conflicts between multiple systems by highlighting for instance the

difference in the policies between them.

C. INTEGRATING XML AND KEYNOTE POLICY

The Keynote engine requires that the assertions, credentials and the policy files be

specified in the syntax as specified in RFC 2704 and examined in section ‘A’ above. This

structure restricts our ability to define any meaningful network security policy in an error

free manner. Further, any policy file received in this format is not human readable, thus

establishing a daunting requirement to verify its correctness and to detect security

loopholes if any. Thus there is a clear problem of differentiation between data content

and its representation. The same data is required by the Keynote engine in one format

while on the other hand the format is not suited for human interpretation and validation.

This is where it is felt that XML could be brought in. Specifying the policy data in an

XML format will enable us to use XSL to translate the data to the format needed. XSL

could also be used to present the data a more human readable form. Further specifying an

XML Schema would provide us the benefit of validating the XML policy file for

correctness prior to its transformation.

33

IV. DESIGN AND IMPLEMENTATION

A. DESIGN METHODOLOGY

The design of the policy editor was done in the following major steps:

1. Study the existing keynote policy language.

2. List out the alternative approaches to design.

3. Examine XML and evaluate design alternatives using XML.

4. Design of a Java based GUI.

5. Integration of various components.

B. ALTERNATIVE DESIGN APPROACHES

Two design approaches were studied and implemented. These are as below:

1. Option 1: Non XML Version

We shall look at the ‘conditions’ field of the policy file in the following

discussion. The first option considered was to use any high level programming language

to develop a graphical user interface that takes user inputs and converts it into the

Keynote policy. This approach is extremely difficult to implement due to the complexity

of the policy specification language. However preliminary research led to the observation

that representing the user’s policy data in a consistent data structure would enable easy

processing of the data for writing out the Boolean expressions of the KeyNote file. The

appropriate data structure for one such implementation and the algorithm for the

application code is given in the succeeding paragraphs.

a. Data Structure

A ‘tree’ data structure is selected for the storage of the choices for the

conditions field of the policy file (Refer Figure 11). A constraint wherein the children of

any node meet an OR condition is enforced. The parent is then ‘ANDed’ to the ‘ORed’

children. For example, a condition specified as below would have an equivalent tree

structure as shown:

34

o Condition Statement

((security_level==‘high’)&&((remote_filter_port ==21)|| (local_filter_port

== 21)) ..

o Tree structure

Figure 11. Tree Layout of a Condition Statement.

b. The Algorithm:

An algorithm for generating KeyNote policy file from the user’s tree

structured policy data was implemented in Java. The algorithm is as below:

Function Generate_policy: Parameters Node, Returns String

// this is a recursive program that generates a document in the KeyNote

// format reading the policy data from a tree structured policy file.

Begin

If node = = leaf node

Begin

Read attribute name

Read attribute value

Set node_string = (attribute name == ‘ attribute value’)

Return node_string

End

Else

 Begin

 Read attribute name

35

 Read attribute value

 Set parent_string = (attribute name == ‘ attribute value’)
 Set child_count =0;

 For each child_node

 Begin

 child_count = child_count+1;

 If child_count ==1 //first child

 first_child_string
 = Generate_policy(child_node);

 ElseIf child_count ==2

 Begin

child_string
 = Generate_policy(child_node);

Set combined_string =
(first_child_string || child_string

End

 Else

Set combined_string = combined_string ||
child_string

 EndIf

 End

 Set node_string = (parent_string && (child_string)

 Return node_string;

 End

 EndIf

 End

c. Advantages of the Solution

This program produces the desired result and has a few merits as under:

o This solution results in simple application code. The code is mainly the

recursive code along with other graphic components.

o The complexity of the code is O(log n) , where n is the number of leaf

nodes. This is due to the representation of the policy in a tree structure.

36

However since the tree need not be balanced it may not be extremely

efficient. (Aho, Hopcroft and Ullman, 1987)

d. Shortcomings of the Solution

o The constraint imposed on the data structure works well with our

current need of the policy file but may not suit all the future needs.

o It may be hard if not impossible to represent any arbitrary policy in a

format that maintains the structure constraint.

o It does not solve the problem of auditing, consistency checks and

validation of the stated policy. As the final form of the file is in

keynote policy format, it is not possible to analyze the content of the

file in a practical manner

e. Implementation and Evaluation

o The solution was implemented in Java and successfully generates the

desired keynote policy file.

o Due to the major drawbacks of the solution of extensibility and

validation the solution is not considered a viable practical solution

though it meets the current needs.

2. Option 2: Defining an XML Policy File Format

The alternative was to look at an alternate representation of the policy logic in the

form of a “ user policy file”. The research in coming to the algorithm for option one

demonstrates the utility of a tree structured users policy file format. Further, the typical

hierarchical nature of the policy file also points towards a tree structure. Use of XML

thus seemed the logical step forward. Hence the overall approach for this option was to

come up with format for the user policy file and then possibly transform that to the native

KeyNote policy file format. This approach also provides the flexibility of extracting

useful administrative information from the user policy file. All the advantages of using

XML as described earlier in Section III.B.6 would also apply.

37

C. XML POLICY FILE

Arriving at a format for the user policy file is a challenging task and there are

multiple options available. The only fixed requirement is that the resulting XML file be

well formed. During the course of the thesis research, multiple formats were designed.

Each format had its strengths and shortcomings. For instance one format would lend itself

to an easy application design while another would add more semantic content in the file

format. The former therefore makes it easier to write an application such as a ‘Policy

Editor’ while the latter results in a more descriptive self-defining file, which could be a

good interchange format between multiple applications for instance. However after

multiple iterations of modifications to the file format it is my opinion that the format does

not matter as long as it has enough semantic content to make it understandable to the

reader. I say this, as the choice of element tag names, their sequence etc. is a personal

preference and the power of XSL is always available for another user who wishes to use

an alternative format to transform the file to the format that he desires. Thus arriving at a

well annotated, self-defining and logical policy file format was the endeavor.

Several choices had to be made. For instance a conditional statement like,

(network_mode == ‘normal’ && (security_level ==’high’)) could be represented in

many different formats. If the operators are implicit in the representation then we could

for instance represent it in formats as in option 1-3 below or to reveal various types of

Boolean operators we could follow the fourth or fifth option.

o Option 1 : Use of PCData (Text content)

<network_mode>

normal

<security_level>

 high

</security_level>

 </network_mode>

38

o Option 2 – Use of Attributes

<network_mode value =’normal’>

<security_level value = ‘high’>

</security_level>

 </network_mode>

o Option 3 – Generic nodes

<element tagname = ‘network_mode’ value = ‘normal’>

 <element tagname = ‘security_level’ value = ‘high’>

 </element>

</element>

o Option 4 – Define the operators to be used. To write a policy file to represent

a complex Boolean expression such as – ((network_mode == ‘normal’)&&

((security_level == ‘high’) || (security_level == ‘low’))), we could represent

the same using XML as under:

<operator value = ‘&&’> <!--Note prefix usage -->

<network network_mode = ‘normal’>

 <operator value = ‘||’>

 <security security_level ==’high’/>

 <security security_level ==’low’/>

 </operator>

 </network>

 </operator>

o Option 5 – Infix notation

<network network_mode = ‘normal’>

<operator value = ‘&&’>

39

 <security security_level ==’high’/>

 <operator value = ‘||’/>

 <security security_level ==’low’/>

</operator>

</network>

These are only a few possible representations of the file format. The options 1-3

make the application code simpler by making the operators implicit in the representation.

However they do not lend themselves to extending to future needs by allowing other

Boolean operations. The fourth and fifth operations make it possible to extend the format

to any possible policy representation. However the writing the application code would

require a little more detail and effort. As stated earlier any format is acceptable provided

we support translations to the formats desired and that is the power of XML.

Representation of the data should not hinder its use in any way.

The XML policy file that was finally arrived at is shown in Appendix ‘A’.

D. XSL

Having arrived at the XML policy file format XSL stylesheets had to be written to

transform the policy file into desired formats. Two stylesheets were designed using

XSLT (Refer Figure 12).

40

Figure 12. XSL Transformation of XML Policy Data in the User Policy File.

 The stylesheet for transforming the file to the Keynote policy file format is as

shown in Appendix ‘B’. The result of transforming the XML policy file this stylesheet is

shown in Appendix D. An alternative stylesheet to transform the XML policy file to a

more human readable, graphical web based format was also written. This is provided in

Appendix C. The transformed output of the XML Policy file using this template is shown

in Figure 17.

E. JAVA BASED GUI

Though XML provides us with the flexibility to edit the policy file in any XML

editor, it would still be convenient to provide a graphical user interface to manipulate the

policy file. This would help in eliminating inadvertent errors and would also provide an

automated entry into multiple elements without the need to edit each element content.

This would enable global policy decisions to be applied throughout the policy file. An

experienced system administrator could still capitalize on the use of the XML policy

format and edit the file in the absence of the graphical user interface (GUI).

A Java-based GUI was therefore built to integrate various components of the

software. Drop down menus and dialog boxes guide the user to input various parameters

41

required for the policy file. To enable maintenance of the GUI, from now on called the

Policy-Editor, a separate XML configuration file was used to feed the data for various

drop down menus and combo/list boxes. This decoupling of the Java code from the

configuration data will enable continued use of the Policy-Editor without the need to

modify the Java code.

The application uses the Java Document Object Model (JDOM) and Simple API

for XML (SAX) packages to read, modify and translate XML files. JDOM beta 8 release

was used and is available from http://www.JDOM.org

The application has been broadly divided into two modules the Admin module

and the Operational Settings module. The Admin module caters for changes made

infrequently and which provide the administrator to enter major changes to the policy file

easily. The changes made in this menu option are saved in the config.xml file and will

also result in changes to the entries in the combo/list boxes that appear under the

operational settings. In other words, only entries that are allowed by the admin module

will be available for further granular changes in the operational settings module. For

instance if port 21 is opened using the Port-Management menu option under the admin

menu then it would be possible to make further granular changes to Port 21 using the

operational settings options. This may be for instance enable ESP with DES encryption

for port 21.

Figures 13 to 16 are screen shots of the Policy Editor. Figure 13 and Figure 14 use

the admin module to select ports and operational modes and security levels respectively.

Figures 15 and 16 show the granular settings of encryption and authentication for

particular ports. Figure 17 shows how the XSL transformation of the policy file displays

the policy file in a graphical and more intuitive format.

42

Figure 13. Managing Ports in the Admin Module.

Figure 14. Admin Mode Settings for Security Level and Op Modes

43

Figure 15. Encryption Settings For Individual Ports

Figure 16. Authentication Settings for AH Mode Heading should be with figure

44

F. XML SPY – AN XML EDITOR

 XML Spy Suite from Altova, Copyright ©1998-2002 Altova GmbH, is a

comprehensive and easy-to-use product family that facilitates all aspects of XML

Application Development. The product family consists of the XML Spy Document

Framework and XML Spy IDE. XML Spy Document Framework consists of XSLT

Designer and XML Spy Document Editor. The XSLT Designer enables writing of

complex XSLT Stylesheets using an intuitive drag-and-drop user interface. XSLT

Designer creates forms for use with XML Spy Document Editor. XSLT Designer was

however not used for the purpose of writing the stylesheets for the policy editor, as they

were too complex to be handled by the Designer. XML Spy Document Editor is a word

processor type editor, supporting electronic form-based data input, graphical elements,

tables, as well as real-time validation using XML Schema. XML Spy IDE is an integrated

solution for XML-based application development, allowing easy creation and

management of XML documents, XML schemas, as well as XSLT Stylesheets XML-Spy

was used in the development of the XML Policy file. Figure 18 is a screen shot depicting

the use of XML Spy editor. It displays how in the absence of the policy editor, the XML

Spy (or any such editor) could be used to manipulate the XML Policy file directly. The

result of schema validation can also be seen here. Figure 19 is the design view of the

schema when viewed in XML Spy.

45

Figure 17. XSL Transformation of the Policy File

46

Figure 18. Editing and Validation of XML Policy File Using XML Spy

47

Figure 19. Schema Design View of the XML Policy Document

The security policy management toolkit thus comprises of the Java based Policy-

Editor and an XML editor such as XML Spy, XML Notepad etc. The XML editors are

not essential and only aid in manipulating the files and transforming them to multiple

forms. The XML editors enable schema validation and also provide tools for

manipulation of the XML, Schema and XSL files.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

V. RESEARCH SUMMARY AND FUTURE WORK

A. INTRODUCTION

Security policy management is a critical issue in the management of computer and

networking resources. IPsec and Keynote provide a mechanism to implement a granular

security policy. Previous research in the area of ‘Quality of Security Service’

demonstrates how an adaptive security policy can provide enhanced security with optimal

utilization of network resources. The only missing link in the process is the difficulty in

specifying a well-defined, granular, error free and consistent security policy in the

language understood by the Keynote trust management engine. This thesis was aimed at

finding a solution to this problem by way of developing an easy to use yet powerful

security policy editor. The thesis demonstrates that use of XML technology as a middle

layer provides us with a means to combine the complexity of Keynote with the simplicity

of a policy editor. This novel approach also provides us all the benefits of XML, such as

XSL and XML security. While XSL was extensively used, XML security tools could be

used as follow up future work.

B. SUMMARY OF RESEARCH PERFORMED IN THIS THESIS

The thesis involved thorough study and implementation of concepts from a wide

variety of areas. Extensive programming in Java and integration with the emerging XML

technologies was achieved. Concepts from computer security, networking and

programming languages were studied and adapted to meet the requirement set forth in the

thesis, i.e. security-policy management. A fully functional XML based Policy-Editor was

developed and tested. In particular the thesis involved the following:

• Study of IPsec and Keynote Trust Management System,

• Understanding of Quality of Security Service Concepts,

• In depth understanding of different XML technologies,

• Development of human intuitive representation of complex low level policy

structures,

50

• Introducing a novel approach to Security Policy management using XML, and

• Extensive Java and XML programming.

C. FUTURE WORK

Security policy management is a vast area and the research done in this thesis can

be complemented with additional work in a number of areas to provide better tools for

policy management. Listed below are several major items that will require attention.

1. Policy File Format

The XML policy file format currently specified could benefit from a more

elaborate format with tags for other parameters. XML Namespaces and XML

vocabularies could be utilized for a more comprehensive policy format. Different

possible combinations of security attributes need to be taken into consideration in the

policy specification. Examples of further implementation could involve incorporating

other parameters such as algorithm key length, time-of-day parameters etc. As explained

in Section IV(C), the policy format should be able to accommodate other Boolean

operators such as inequality definitions (<, >, !=) in the security policy management

mechanism. For example, esp_enc_alg > DES could imply 3DES and AES if we have an

ordering for the ‘security strength’ of each algorithm. Global policy statements such as

encryption in crisis mode < 3DES, etc. should be possible. Inclusion of IP addresses in

policy statements should also be made possible. The concepts for these have been

demonstrated in the implementation and other options analyzed in various chapters.

Addition of more parameters as stated above would however open up possibilities for

inconsistencies in policy statements and the same will have to be carefully and formally

worked out.

2. Schema Design and RELAX NG

W3C XML Schemas are complicated and hard to formulate. The schema

generated in this thesis was automatically generated by XML Spy and modified manually

to suit our current requirement. This schema language is very complex and permits us to

define complex content models. The schema for instance could be made more specific or

more general. This would depend on how we intend to formulate the policy statements.

51

Future work could therefore focus on how a detailed policy encompassing various

parameters such as IP addresses, encryption attributes etc could be specified. The

interrelationship between different elements could also be specified, such as if ‘Crisis’

mode uses encryption then so should ‘Normal’ and ‘Impacted’ mode. In exploring more

usage of Schema, alternate schema languages such as RELAX NG could be tried. This

new language is gaining popularity due its simplicity and robustness. RELAX NG is the

result of merging two popular schema languages: RELAX and TREX. The RELAX NG

language is very similar to the W3C XML Schema language. RELAX NG has a much

stronger foundation in mathematical models, which allows programmers to create highly

optimized validation tools. In addition, RELAX NG omits many features that make W3C

XML Schemas difficult to learn. RELAX NG, like W3C XML Schemas, is written in an

XML Syntax and requires you to define the allowable elements and attributes within your

instance documents. RELAX NG can be found on the Web at http://relaxng.org.

3. Policy Editor Enhancements

The policy editor interface though complete and functional can be improved upon.

The particular improvements envisaged are as follows:

o Data Binding.

Data Binding is a concept where XML data can be read into applications as

objects. By accessing the data as Java objects, manipulation becomes faster and

managing large policy files would not slow down the system. Through the use of

data binding the policy editor could be made more efficient and faster.

o Global policy settings.

The policy editor could be modified to enable global policy settings. For

instance we could have a statement such as all ports should have a minimum

encryption of DES or the maximum encryption algorithm for Crisis mode should

not exceed 3DES etc. The global settings option could enter the default settings

for all permissible ports and then more granular changes could be made

o Help.

52

Help to guide the user to form syntactically correct policy statements and

correct use of GUI could make the editor more complete. Context sensitive help

could also be added

o Translation and viewing XML.

XML translation and viewing currently need the help of any general purpose

XML editor. Using Java packages such as Javax, the same could be incorporated

into the GUI thus dispensing the need for XML editors for translation.

o Schema validation.

Validation of the XML document against DTD and Schema need to be

incorporated into the GUI. The same is currently done using an XML tool such as

XML Spy. DOM/JDOM/SAX could be used for the purpose.

o Inconsistency and contradiction checks.

As the policy file is extended to include global parameters and overlapping

rules apply to a particular port or application, inconsistencies and contradictions

would begin to emerge. The same would have to be considered and avoided.

Various XML tools could help in achieving this. Distributed IPsec policy when

considered would also give rise to multiple issues of policy consistencies.

o Improvement in the look and feel of the user interface.

The look and feel of the editor can always be improved to cater for user

preferences and to avoid chances of introducing inadvertent errors. Context

sensitive tool tips, toolbars and help could all be incorporated into the policy

editor to give it a complete look.

3. XML Interface to Keynote

It is felt that extending the XML policy language specified in this thesis to a

broader XML specification and providing an XML processor in the Keynote engine itself

would greatly enhance the use of Keynote. This would probably reduce the overhead of

parsing in Keynote and provide the power of XML to it for better auditing and dynamic

management of trust. XML security features could also be incorporated. For instance

53

using XML signature, a user can sign for parts of the XML document i.e. a subset of the

‘Elements’. Thus making him accountable for the parts signed by him only. By providing

an XML interface to Keynote, application users could define their own versions of the

policy language and use XSL for translating it into the desired Keynote format, which

would be trivial, or alternatively they could use the vocabulary specified in the Keynote

specifications.

D. CONCLUSION

This thesis proves the concept of using XML for management of security policy.

A Policy-Editor based on these concepts was designed and developed. Software design

and development is ever evolving and this chapter highlights various areas for future

work and enhancements. These should eventually lead to complete utilization of the

power of IPsec and result in more secure networks.

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

APPENDIX A. XML POLICY FILE

A sample XML Policy file, with various permissible parameters is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U by Raj Mohan) -->
<Policy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- href="C:\XMLProject\currentPolicyXMLXSL\KeynotePolicyModified02JunXSL.xsl" -->
 <KeyNoteVersion><![CDATA[KeyNote-Version: 2
]]></KeyNoteVersion>
 <Comment><![CDATA[Comment: Policy file for Network modes and Security Levels in XML Format
]]></Comment>
 <Authorizer><![CDATA[Authorizer: "POLICY"
]]></Authorizer>
 <Licensees><![CDATA[Licensees: "passphrase:mekmitasdigoat"
]]></Licensees>
 <Conditions>
 <ApplicationDomain app_domain="IPsec policy">
 <NetworkMode network_mode="normal">
 <SecurityLevel security_level="low">
 <Port local_filter_port="21" remote_filter_port="21">
 <Encapsulation esp_present="yes">
 <EncryptionAlgorithm esp_enc_alg="des" />
 <EncryptionAlgorithm esp_enc_alg="des3" />
 </Encapsulation>
 </Port>
 <Port local_filter_port="23" remote_filter_port="23">
 <Encapsulation esp_present="yes">
 <EncryptionAlgorithm esp_enc_alg="des" />
 <EncryptionAlgorithm esp_enc_alg="des-iv64" />
 <EncryptionAlgorithm esp_enc_alg="des3" />
 <EncryptionAlgorithm esp_enc_alg="idea3" />
 <EncryptionAlgorithm esp_enc_alg="des-iv32" />
 <EncryptionAlgorithm esp_enc_alg="aes" />
 </Encapsulation>
 <Ah ah_present="yes">
 <AuthenticationAlgorithm ah_auth_alg="hmac-sha" />
 <AuthenticationAlgorithm ah_auth_alg="des-mac" />
 </Ah>
 </Port>
 <Port local_filter_port="100" remote_filter_port="100">
 <Encapsulation esp_present="yes">
 <EncryptionAlgorithm esp_enc_alg="des" />
 <EncryptionAlgorithm esp_enc_alg="des-iv64" />
 <EncryptionAlgorithm esp_enc_alg="des3" />
 <EncryptionAlgorithm esp_enc_alg="des-iv32" />
 <AuthenticationAlgorithm esp_auth_alg="hmac-md5" />
 <AuthenticationAlgorithm esp_auth_alg="hmac-sha" />
 </Encapsulation>
 <Ah ah_present="yes">
 <AuthenticationAlgorithm ah_auth_alg="hmac-md5" />
 <AuthenticationAlgorithm ah_auth_alg="hmac-sha" />
 </Ah>
 </Port>
 </SecurityLevel>
 <SecurityLevel security_level="medium">
 <Port local_filter_port="21" remote_filter_port="21">
 <Encapsulation esp_present="yes">
 <EncryptionAlgorithm esp_enc_alg="des" />
 <EncryptionAlgorithm esp_enc_alg="des3" />
 <EncryptionAlgorithm esp_enc_alg="des-iv32" />

56

 </Encapsulation>
 </Port>
 </SecurityLevel>
 <SecurityLevel security_level="high" />
 </NetworkMode>
 <NetworkMode network_mode="impacted">
 <SecurityLevel security_level="low" />
 <SecurityLevel security_level="medium" />
 <SecurityLevel security_level="high" />
 </NetworkMode>
 <NetworkMode network_mode="crisis">
 <SecurityLevel security_level="low" />
 <SecurityLevel security_level="medium" />
 <SecurityLevel security_level="high" />
 </NetworkMode>
 </ApplicationDomain>
 </Conditions>
 <Dummy><![CDATA[
]]></Dummy>
</Policy>

57

APPENDIX B. KEYNOTE POLICY TEMPLATE

The following is the XSL stylesheet that transforms the XML Policy file into the
KeyNote Policy file syntax.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text" version="1.0" encoding="UTF-8" indent="yes"/>
 <!-- ~~~ -->
 <!-- root template -->
 <!-- apply the templates for all the children of the /policy node -->
 <!-- just call for each child .. hence can add more children to the source tree and only need to add the

corresponding template here or let it use the default template -->
 <xsl:template match="/">
 <xsl:apply-templates/>
 </xsl:template>
 <!-- root template -->
 <!-- ~~~ -->
 <!-- GENERIC TOP LEVEL TEMPLATE ***-->
 <!-- ~~~ -->
 <!-- generic template for all other children of policy -->
 <xsl:template match="/Policy/*" priority=".8">
 <xsl:value-of select="."/>
 </xsl:template>
 <!-- children of policy template -->
 <!-- ~~~~~~~~~~~~~~~~~~~ -->
 <!-- ~~~ -->
 <!-- CONDITIONS TEMPLATE ** -->
 <!-- ~~~ -->
 <!-- conditions template -->
 <xsl:template match="/Policy/Conditions" priority=" 0.5">
 <!-- start the opening brackets for the conditions clause -->
 <xsl:text>Conditions: (</xsl:text>
 <!-- Handle the ApplicationDomain element .. print its attribute and values in a bracket -->
 <xsl:for-each select="child::ApplicationDomain">
 <xsl:call-template name="oneAttributeContent"/>
 </xsl:for-each>
 <!-- for each network mode, open a bracket enter the attribute name = value close -->
 <!-- the bracket and place the operator && and then call the template for the level children -->
 <!-- after the call close the bracket -->
 <!-- if the node is not the first node or if it had precedent-siblings which were also of -->
 <!-- network node type then place an || before starting the first bracket -->
 <!-- || ((network_mode == normal) && -->
 <xsl:for-each select="ApplicationDomain/NetworkMode">
 <!-- first network node to be handled here -->
 <xsl:if test="(count(preceding-sibling::NetworkMode) = 0)">
 <xsl:text> && </xsl:text>
 <xsl:text> (</xsl:text>
 <xsl:call-template name="oneAttributeContent"/>
 <!-- handle all children of network node here -->
 <xsl:for-each select="SecurityLevel">
 <!-- first SecurityLevel node to be handled here -->
 <xsl:if test="(count(preceding-sibling::SecurityLevel) = 0)">
 <xsl:text> && </xsl:text>
 <xsl:text> (</xsl:text>
 <xsl:call-template name="oneAttributeContent"/>
 <!-- handle children of SecurityLevel here -->
 <!-- children here -->
 </xsl:if>
 <!--end if securtiyLevel node is the first one -->
 <!-- except first case preceed with an or symbol -->
 <xsl:if test="(count(preceding-sibling::SecurityLevel) > 0)">
 <xsl:text> || </xsl:text>
 <xsl:text> (</xsl:text>
 <xsl:call-template name="oneAttributeContent"/>

58

 <!-- handle children of SecurityLevel here -->
 <!-- children here -->
 </xsl:if>
 <!-- last SecurityLevel node to be handled here close bracket -->
 <xsl:if test="(count(following-sibling::SecurityLevel) = 0)"/>
 <xsl:text>) </xsl:text>
 </xsl:for-each>
 <!-- for all levels -->
 </xsl:if>
 <!-- if network node is the first one -->
 <!-- except first case preceed with an or symbol -->
 <xsl:if test="(count(preceding-sibling::NetworkMode) > 0)">
 <xsl:text> || </xsl:text>
 <xsl:text> (</xsl:text>
 <xsl:call-template name="oneAttributeContent"/>
 <!-- handle all children of network node here -->
 <xsl:for-each select="SecurityLevel">
 <!-- first SecurityLevel node to be handled here -->
 <xsl:if test="(count(preceding-sibling::SecurityLevel) = 0)">
 <xsl:text> && </xsl:text>
 <xsl:text> (</xsl:text>
 <xsl:call-template name="oneAttributeContent"/>
 <!-- handle children of SecurityLevel here -->
 <!-- children here -->
 </xsl:if>
 <!--end if securtiyLevel node is the first one -->
 <!-- except first case preceed with an or symbol -->
 <xsl:if test="(count(preceding-sibling::SecurityLevel) > 0)">
 <xsl:text> || </xsl:text>
 <xsl:text> (</xsl:text>
 <xsl:call-template name="oneAttributeContent"/>
 <!-- handle children of SecurityLevel here -->
 <!-- children here -->
 </xsl:if>
 <!-- last SecurityLevel node to be handled here close bracket -->
 <xsl:if test="(count(following-sibling::SecurityLevel) = 0)"/>
 <xsl:text>) </xsl:text>
 </xsl:for-each>
 <!-- for all levels -->
 </xsl:if>
 <!-- last network node to be handled here close bracket -->
 <xsl:if test="(count(following-sibling::NetworkMode) = 0)"/>
 <xsl:text>) </xsl:text>
 </xsl:for-each>
 <!-- end network nodes -->
 <xsl:text>) </xsl:text>
 </xsl:template>
 <!-- conditions template -->
 <!-- ~~~ -->
 <!-- ~~~ -->
 <!-- CONDITIONS TEMPLATE *** -->
 <!-- ~~~ -->
 <!-- conditions template -->
 <xsl:template match="/Policy/Conditions" priority="1">
 <!-- start the opening brackets for the conditions clause -->
 <xsl:text>Conditions: </xsl:text>
 <!-- Handle the ApplicationDomain element .. print its attribute and values in a bracket -->
 <xsl:for-each select="child::ApplicationDomain">
 <xsl:call-template name="appDomainContent"/>
 </xsl:for-each>
 <xsl:text>-> "true";</xsl:text>
 </xsl:template>
 <!-- ~~~ -->
 <!-- NAMED TEMPLATE FOR APPLICATION DOMAIN ************************************ -->
 <!-- ~~~ -->
 <!-- ((app_domain == "IPsec policy") && ((netwokmode1) || (networkmode2) ...)) -->
 <xsl:template name="appDomainContent">
 <xsl:text> (</xsl:text>
 <xsl:call-template name="oneAttributeContent"/>
 <xsl:for-each select="NetworkMode">

59

 <xsl:if test="(count(preceding-sibling::NetworkMode) = 0)">
 <xsl:text> && </xsl:text>
 <xsl:text> (</xsl:text>
 <xsl:call-template name="networkModeContent"/>
 </xsl:if>
 <!--end if NetworkMode node is the first one -->
 <!-- except first case preceed with an or symbol -->
 <xsl:if test="(count(preceding-sibling::NetworkMode) > 0)">
 <xsl:text> || </xsl:text>
 <xsl:call-template name="networkModeContent"/>
 </xsl:if>
 <!-- last NetworkModel node to be handled here close bracket -->
 <xsl:if test="(count(following-sibling::NetworkMode) = 0)">
 <xsl:text>) </xsl:text>
 </xsl:if>
 </xsl:for-each>
 <!-- end for each NetworkMode -->
 <xsl:text>) </xsl:text>
 </xsl:template>
 <!-- end appDomainContent template -->
 <!-- ~~~ -->
 <!-- NAMED TEMPLATE FOR NETWORK MODE ************************************ -->
 <!-- ~~~ -->
 <!-- ((network_mode == "normal") && ((security1) || (seucurity2) ...)) -->
 <xsl:template name="networkModeContent">
 <xsl:text> (</xsl:text>
 <xsl:call-template name="oneAttributeContent"/>
 <xsl:for-each select="SecurityLevel">
 <xsl:if test="(count(preceding-sibling::SecurityLevel) = 0)">
 <xsl:text> && </xsl:text>
 <xsl:text> (</xsl:text>
 <xsl:call-template name="securityContent"/>
 </xsl:if>
 <!--end if SecurityLevel node is the first one -->
 <!-- except first case preceed with an or symbol -->
 <xsl:if test="(count(preceding-sibling::SecurityLevel) > 0)">
 <xsl:text> || </xsl:text>
 <xsl:call-template name="securityContent"/>
 </xsl:if>
 <!-- last securityLevel node to be handled here close bracket -->
 <xsl:if test="(count(following-sibling::SecurityLevel) = 0)">
 <xsl:text>) </xsl:text>
 </xsl:if>
 </xsl:for-each>
 <!-- end for each securityLevel -->
 <xsl:text>) </xsl:text>
 </xsl:template>
 <!-- end network mode template -->
 <!-- ~~~ -->
 <!-- NAMED TEMPLATE FOR SECURITY ************************************ -->
 <!-- ~~~ -->
 <!-- ((security_level == "low") && ((port1) || (port2) ...)) -->
 <xsl:template name="securityContent">
 <xsl:text> (</xsl:text>
 <xsl:call-template name="oneAttributeContent"/>
 <xsl:for-each select="Port">
 <xsl:if test="(count(preceding-sibling::Port) = 0)">
 <xsl:text> && </xsl:text>
 <xsl:text> (</xsl:text>
 <xsl:call-template name="portContent"/>
 </xsl:if>
 <!--end if Port node is the first one -->
 <!-- except first case preceed with an or symbol -->
 <xsl:if test="(count(preceding-sibling::Port) > 0)">
 <xsl:text> || </xsl:text>
 <xsl:call-template name="portContent"/>
 </xsl:if>
 <!-- last Port node to be handled here close bracket -->
 <xsl:if test="(count(following-sibling::Port) = 0)">
 <xsl:text>) </xsl:text>

60

 </xsl:if>
 </xsl:for-each>
 <!-- end for each Port -->
 <xsl:text>) </xsl:text>
 </xsl:template>
 <!-- ~~~ -->
 <!-- NAMED TEMPLATE FOR PORT ************************************ -->
 <!-- ~~~ -->
 <!-- outcome : take the two attributes local port num and remote port number and or them in a bracket -->
 <!-- and and it with the templates of its children i.ed encapsulation and Ah ored -->
 <!-- e.g (((local_port == "23") || (remote_port == "23")) && ((encapsulation) || (authentication))) -->
 <xsl:template name="portContent">
 <xsl:text> (</xsl:text>
 <xsl:call-template name="portTwoAttributeContent"/>
 <xsl:text> && </xsl:text>
 <xsl:text> (</xsl:text>
 <xsl:for-each select="Encapsulation">
 <!-- Encapsulation node to be handled here -->
 <xsl:call-template name="encapsulationOrAh"/>
 </xsl:for-each>
 <!-- for all encryption algorithms -->
 <xsl:for-each select="Ah">
 <!--Ah node to be handled here -->
 <xsl:if test="(count(preceding-sibling::Encapsulation) > 0)">
 <xsl:text> || </xsl:text>
 </xsl:if>
 <xsl:call-template name="encapsulationOrAh"/>
 </xsl:for-each>
 <xsl:text>) </xsl:text>
 <xsl:text>) </xsl:text>
 </xsl:template>
 <!-- port template -->
 <!-- ~~~ -->
 <!-- ~~~ -->
 <!-- GENERIC NAMED TWO ATTRIBUTE TEMPLATE ************************************ -->
 <!-- ~~~ -->
 <!-- generic named template will print the attrbute and its value inside a bracket -->
 <!-- TODO need to check if it has more than needed attribute then only apply to the first one -->
 <!-- eg output ((local_filter_port == "23") || (local_filter_port == "23")) of the context nodes attribute -->
 <xsl:template name="portTwoAttributeContent" priority=".8">
 <xsl:text>(</xsl:text>
 <xsl:for-each select="@local_filter_port">
 <xsl:text>(</xsl:text>
 <xsl:value-of select="local-name()"/>
 <xsl:text> == </xsl:text>
 <xsl:text>"</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>"</xsl:text>
 <xsl:text>) </xsl:text>
 </xsl:for-each>
 <xsl:text> || </xsl:text>
 <xsl:for-each select="@remote_filter_port">
 <xsl:text>(</xsl:text>
 <xsl:value-of select="local-name()"/>
 <xsl:text> == </xsl:text>
 <xsl:text>"</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>"</xsl:text>
 <xsl:text>) </xsl:text>
 </xsl:for-each>
 <xsl:text>) </xsl:text>
 </xsl:template>
 <!-- children of policy template -->
 <!-- ~~~~~~~~~~~~~~~~~~~ -->
 <!-- ~~~ -->
 <!-- NAMED TEMPLATE FOR ENCAPSULATION OR AH ************************************ -->
 <!-- ~~~ -->
 <!-- outcome should be ((esp_present == "yes") && (.. call for each encryption algo.. with ors in between then

&& then call for auth and close) -->
 <!-- ((esp_present == "yes") && | ((enc1) || (enc2)) && ((ah1)||(ah2)) |) -->

61

 <!-- TODO check for inconsistency ... ie esp_present == yes but no enc alg specified -->
 <xsl:template name="encapsulationOrAh">
 <xsl:text> (</xsl:text>
 <xsl:call-template name="oneAttributeContent"/>
 <xsl:text> && </xsl:text>
 <xsl:text> (</xsl:text>
 <!-- open a (and call for each algorithm where type = encryption and put ors in between and close

with) -->
 <xsl:for-each select="EncryptionAlgorithm">
 <!-- first encryption algorithm node to be handled here -->
 <xsl:if test="(count(preceding-sibling::EncryptionAlgorithm) = 0)">
 <xsl:text>(</xsl:text>
 <xsl:call-template name="algorithm"/>
 </xsl:if>
 <!--end if encryptionnode is the first one -->
 <!-- except first case preceed with an or symbol -->
 <xsl:if test="(count(preceding-sibling::EncryptionAlgorithm) > 0)">
 <xsl:text> || </xsl:text>
 <xsl:call-template name="algorithm"/>
 </xsl:if>
 <!-- last encryption algorithm node to be handled here close bracket -->
 <xsl:if test="(count(following-sibling::EncryptionAlgorithm) = 0)">
 <xsl:text>) </xsl:text>
 </xsl:if>
 </xsl:for-each>
 <!-- for all encryption algorithms -->
 <!-- insert && between encryption and auth types-->
 <xsl:if test="(count(child::EncryptionAlgorithm) > 0)">
 <xsl:text> && </xsl:text>
 </xsl:if>
 <!-- open a (and call for each algorithm where type = authentication and put ors in between and

close with) -->
 <xsl:for-each select="AuthenticationAlgorithm">
 <!-- first authentication algorithm node to be handled here -->
 <xsl:if test="(count(preceding-sibling::AuthenticationAlgorithm) = 0)">
 <xsl:text>(</xsl:text>
 <xsl:call-template name="algorithm"/>
 </xsl:if>
 <!--end if encryptionnode is the first one -->
 <!-- except first case preceed with an or symbol -->
 <xsl:if test="(count(preceding-sibling::AuthenticationAlgorithm) > 0)">
 <xsl:text> || </xsl:text>
 <xsl:call-template name="algorithm"/>
 </xsl:if>
 <!-- last authentication algorithm node to be handled here close bracket -->
 <xsl:if test="(count(following-sibling::AuthenticationAlgorithm) = 0)">
 <xsl:text>) </xsl:text>
 </xsl:if>
 </xsl:for-each>
 <!-- for all authentication algorithms -->
 <!-- final closing of all the brackets -->
 <xsl:text>) </xsl:text>
 <xsl:text>) </xsl:text>
 </xsl:template>
 <!-- ~~~ -->
 <!-- NAMED TEMPLATE FOR ALGORITHM AND ITS ATTRIBUTES****************** -->
 <!-- ~~~ -->
 <!-- outcome when called in the context of encryptionAlgorithm node -->
 <!-- ((esp_enc_alg == "DES)&& ((esp_key_length == "128))((esp_key_length == "128) ..)) -->
 <!-- caller need not enclose these in a bracket -->
 <!-- call one such for each algorithm -->
 <!-- ~~~ -->
 <!-- template forEncryptionAlgorithm -->
 <xsl:template name="algorithm" priority=".8">
 <xsl:text> (</xsl:text>
 <xsl:call-template name="oneAttributeContent"/>
 <xsl:for-each select="Attribute">

 <xsl:if test="(count(preceding-sibling::Attribute) = 0)">
 <xsl:text> && </xsl:text>

62

 <xsl:text> (</xsl:text>
 <xsl:call-template name="oneAttributeContent"/>
 </xsl:if>

 <!--end if Attribute node is the first one -->
 <!-- except first case preceed with an or symbol -->
 <xsl:if test="(count(preceding-sibling::Attribute) > 0)">
 <xsl:text> || </xsl:text>
 <xsl:call-template name="oneAttributeContent"/>
 </xsl:if>
 <!-- last Attributel node to be handled here close bracket -->
 <xsl:if test="(count(following-sibling::Attribute) = 0)">
 <xsl:text>) </xsl:text>

 </xsl:if>
 </xsl:for-each>
 <!-- end for each attribute -->

 <xsl:text>) </xsl:text>
 </xsl:template>
 <!-- children of policy template -->
 <!-- ~~~~~~~~~~~~~~~~~~~ -->
 <!-- ~~~ -->
 <!-- GENERIC NAMED ONE ATTRIBUTE TEMPLATE *********************** -->
 <!-- ~~~ -->
 <!-- generic named template will print the attrbute and its value inside a bracket -->
 <!-- TODO need to check if it has more than one attribute then only apply to the first one -->
 <!-- currently lists all the attributes and put an == and the value and enclose the complete thing in brackets -->
 <!-- eg output (attributeName == "value") of the context nodes attribute -->
 <xsl:template name="oneAttributeContent" priority=".8">
 <xsl:for-each select="@*">
 <xsl:text>(</xsl:text>
 <xsl:value-of select="local-name()"/>
 <xsl:text> == </xsl:text>
 <xsl:text>"</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>"</xsl:text>
 <xsl:text>) </xsl:text>
 </xsl:for-each>
 </xsl:template>
 <!-- children of policy template -->
 <!-- ~~~~~~~~~~~~~~~~~~~ -->
</xsl:stylesheet>

63

APPENDIX C. WEB TEMPLATE

The following is the XSL stylesheet that transforms the XML Policy file into a

web page, depicting the policy settings in tables and color.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <xsl:template match="/">
 <html>
 <head>
 <title>
 Security Policy State

 </title>
 </head>
 <body>
 <h4 align="center">

 <u>

 <h1>Security Policy State</h1>
 </u>
 </h4>
 <u>

 </u>
 <h4>Jump To:</h4>
 <xsl:for-each select="Policy/Conditions/ApplicationDomain/NetworkMode">
 <xsl:for-each select="SecurityLevel">

 <xsl:value-of select="../@network_mode"/>
 <xsl:text> - </xsl:text>
 <xsl:value-of select="@security_level"/>

 </xsl:for-each>
 </xsl:for-each>
 <xsl:for-each select="Policy/Conditions/ApplicationDomain/NetworkMode">
 <xsl:for-each select="SecurityLevel">
 <!-- Table goes in here -->
 <table border="1" bgcolor="000000" title="StatusTableTitle" align="center">
 <caption title="Our TableCaption@title">
 <h3> Security State of Network Policy :
 <xsl:value-of select="../@network_mode"/>
 <xsl:text> - </xsl:text>
 <xsl:value-of select="@security_level"/>

 Number of Ports Open: <xsl:value-of select="count(Port)"/>
 </h3>
 </caption>
 <thead align="center" valign="middle">
 <!--Header-->
 </thead>
 <tbody>
 <tr>
 <!-- row 1 -->
 <!-- row 1headers (1 coln)-->
 <th rowspan="2" bgcolor="cccccc">Port No</th>
 <!-- row 1 Encryption headers (5 colns) -->
 <th colspan="12" bgcolor="aa9966">Encryption Types</th>
 <!-- row 1 Authentication headers (3 Colns)-->
 <th bgcolor="lightblue" colspan="5">AuthenticationTypes</th>
 </tr>
 <tr>
 <!-- row 2 -->

64

 <!-- row 2 Encryption headers (5 colns) -->
 <th bgcolor="cc9966">DES</th>
 <th bgcolor="cc9966">DES-IV64</th>
 <th bgcolor="cc9966">DES-IV32</th>
 <th bgcolor="cc9966">3DES</th>
 <th bgcolor="cc9966">RC4</th>
 <th bgcolor="cc9966">RC5</th>
 <th bgcolor="cc9966">AES</th>
 <th bgcolor="cc9966">IDEA</th>
 <th bgcolor="cc9966">3IDEA</th>
 <th bgcolor="cc9966">BLOWFISH </th>
 <th bgcolor="cc9966">CAST</th>
 <th bgcolor="cc9966">None</th>
 <!-- row 2 Authentication headers (3 Colns)-->
 <th bgcolor="0066ff">HMAC-MD5</th>
 <th bgcolor="0066ff">HMAC-SHA-1</th>
 <th bgcolor="0066ff">HMAC-RIPEMD</th>
 <th bgcolor="0066ff">KPDK</th>
 <th bgcolor="0066ff">None</th>
 </tr>
 <!-- rows for each port -->
 <xsl:for-each select="Port">
 <tr>
 <th bgcolor="yellow">
 <h4>
 <xsl:value-of select="@local_filter_port"/>
 </h4>
 </th>
 <!--for each port, color appropriate cell in table-->
 <xsl:choose>
 <xsl:when test="Encapsulation/EncryptionAlgorithm/@esp_enc_alg = 'des' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/EncryptionAlgorithm/@esp_enc_alg = 'des-iv64' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/EncryptionAlgorithm/@esp_enc_alg = 'des-iv32' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/EncryptionAlgorithm/@esp_enc_alg = 'des3' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/EncryptionAlgorithm/@esp_enc_alg = 'rc4' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>

65

 <xsl:when test="Encapsulation/EncryptionAlgorithm/@esp_enc_alg = 'rc5' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/EncryptionAlgorithm/@esp_enc_alg = 'aes' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/EncryptionAlgorithm/@esp_enc_alg = 'idea' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/EncryptionAlgorithm/@esp_enc_alg = 'idea3' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/EncryptionAlgorithm/@esp_enc_alg = 'blowfish' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/EncryptionAlgorithm/@esp_enc_alg = 'cast' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/EncryptionAlgorithm/@esp_enc_alg = 'none' ">
 <td BGCOLOR="#ff0000"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/AuthenticationAlgorithm/@esp_auth_alg = 'hmac-md5' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/AuthenticationAlgorithm/@esp_auth_alg = 'hmac-sha' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>

66

 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/AuthenticationAlgorithm/@esp_auth_alg = 'hmac-ripemd' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/AuthenticationAlgorithm/@esp_auth_alg = 'kpdk' ">
 <td BGCOLOR="#00ff00"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="Encapsulation/AuthenticationAlgorithm/@esp_auth_alg = 'none' ">
 <td BGCOLOR="#ff0000"/>
 </xsl:when>
 <xsl:otherwise>
 <td BGCOLOR="#ffffff"/>
 </xsl:otherwise>
 </xsl:choose>
 </tr>
 </xsl:for-each>
 </tbody>
 </table>

 <!-- for each port, list the esp encryption algorithms, esp authentication algorithms and ah authentication
algorithms -->

 <xsl:for-each select="Port">
 <h4>Port: <xsl:value-of select="@local_filter_port"/>
 </h4>
 esp Encryption Algorithm(s):

 <xsl:for-each select="Encapsulation/EncryptionAlgorithm">
 <xsl:value-of select="@esp_enc_alg"/>
 <xsl:text/>
 </xsl:for-each>

 esp Authenication Algorithm(s):

 <xsl:for-each select="Encapsulation/AuthenticationAlgorithm">
 <xsl:value-of select="@esp_auth_alg"/>
 <xsl:text/>
 </xsl:for-each>

 ah Authentication Algorithm(s):
 <xsl:for-each select="Ah/AuthenticationAlgorithm">
 <xsl:value-of select="@ah_auth_alg"/>
 <xsl:text/>
 </xsl:for-each>

 </xsl:for-each>
 <h5 align="center">
 Back to Top of Document
 </h5>
 <hr/>
 </xsl:for-each>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

67

APPENDIX D. ISAKMPD.POLICY FILE

The following is a sample of the isakmpd.policy file (From Agar, December
2001). This is the format that the XML policy file (User Policy File) is transformed into
by the stylesheet in Appendix B

KeyNote-Version: 2
Comment: Policy file for Network Modes and Security Levels
Authorizer: "POLICY"
Licensees: "passphrase:mekmitasdigoat"
Conditions: ((app_domain == "IPsec policy") &&
 (
 ((network_mode == "normal") &&
 (
 ((security_level == "low") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") || (remote_filter_port == "23")) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") || (remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "medium") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") || (remote_filter_port == "23")) &&
 (esp_enc_alg == "cast") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") || (remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "high") &&

68

 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") || (remote_filter_port == "23")) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") || (remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
)
)
 ||
 ((network_mode == "impacted") &&
 (
 ((security_level == "low") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") || (remote_filter_port == "23")) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") || (remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "medium") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") || (remote_filter_port == "23")) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") || (remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-md5")
)
)

69

)
 ||
 ((security_level == "high") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") || (remote_filter_port == "23")) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") || (remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
)
)
 ||
 ((network_mode == "crisis") &&
 (
 ((security_level == "low") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") || (remote_filter_port == "23")) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") || (remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
 ||
 ((security_level == "medium") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") || (remote_filter_port == "23")) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") || (remote_filter_port == "79")) &&

70

 (ah_auth_alg == "hmac-sha")
)
)
)
 ||
 ((security_level == "high") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") || (remote_filter_port == "23")) &&
 (esp_enc_alg == "aes") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") || (remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
)
)
 ||
 ((network_mode == "default") &&
 (security_level == "default") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") || (remote_filter_port == "23")) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") || (remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
)
)
 -> "true";

71

LIST OF REFERENCES

Agar Christopher, Dynamic Parameterization of IPsec, Master of Science Thesis,
Department of Computer Science, Naval Postgraduate School, December 2001.

Alfred V. Aho, John E. Hopcroft und Jeffrey D. Ullman. Data Structures and Algorithms.
Addison-Wesley Verlag, 1987.

Angelos D. Keromytis, John Ioannidis, and Jonathan M. Smith, Implementing IPsec, In
Proceedings of the IEEE Global Internet (GlobeCom) 1997, pp. 1948 - 1952. November
1997, Phoenix, AZ.

Blaze Matt, Feigenbaum, Joan, Ioannidis, John, and Keromytis, Angelos D, The KeyNote
Trust Management System Version 2, (RFC 2704, Network Working Group, September
1999, http://www.ietf.org/rfc/rfc2404.txt

Blaze, Matt, Feigenbaum, Joan, and Keromytis, Angelos D., KeyNote: Trust
Management for Public-Key Infrastructures, In Proceedings of the 1998 Security
Protocols International Workshop, Springer LNCS vol. 1550, pp. 59 - 63. April 1998,
Cambridge, England. Also AT&T Technical Report 98.11.1.

Blaze, Matt, Ioannidis, John and Keromytis, Angelos D. Trust Management and Network
Security Protocols, In Proceedings of the 1999 Security Protocols International
Workshop, April 1999, Cambridge, England.

Blaze, Matt, Ioannidis, John and Keromytis, Angelos D., Trust Management for IPsec, In
Proceedings of the Internet Society Symposium on Network and Distributed Systems
Security (SNDSS) 2001, pp. 139 - 151. February 2001, San Diego, CA.

David Hunter, Kurt Cagle, Chris Dix, Roger Kovack, Jonathan Pinnock, Jeff Rafter
Beginning XML 2nd Edition , Wrox Press Ltd,2002.

Doraswamy, Naganand and Harkins, Dan, IPsec The New Security Standard for the
Internet, Intranets, and the Virtual Private Networks, Prentice-Hall, Inc., 1999.

IETF (Internet Engineering Task Force) RFC 2396: Uniform Resource Identifiers (URI):
Generic Syntax, eds. T. Berners-Lee, R. Fielding, L. Masinter. August 1998.

Irvine, C.E. and Levin, T., Quality of Security Service, Proceedings of the New Security
Paradigms Workshop, Cork, Ireland, September 2000

Java 2 Standard Edition, V1.2.2 API Specification,
http://java.sun.com/products/jdk/1.2/docs/api/, Sun Microsystems, Inc., 1999.

72

Kent, S and Atkinson, R, Security Architecture for the Internet Protocol, RFC2401,
Network Working Group, November 1998, http://www.ietf.org/rfc/rfc2401.txt

Leiseboer, John, IPSEC – Security Architecture for IP, Part 2: Security Association,
http://www.chipcenter.com/eexpert/jleiseboer/jleiseboer036.html, ChipCenter: The Web's
Definitive Electronics Resource, Modified 12/05/2001.

Maughan, D., Schertler, M., Schneider M., Turner J., Internet Security Association and
Key Management Protocol (ISAKMP), RFC 2408, Network Working Group, November
1998, http://www.ietf.org/rfc/rfc2409.txt

Naval Postgraduate School, NPS-CS-02-001, IPsec Modulation for the Quality of
Security Service, Spyropoulou, Evdoxia., Agar, Christopher D., Levin, Timothy, and
Irvine, Cynthia, January 2002.

Naval Postgraduate School, NPS-CS-02-002, KeyNote Policy Files and Conversion to
Disjunctive Normal Form for Use in IPsec, Spyropoulou, Evdoxia., Levin, Timothy, and
Irvine, Cynthia, January 2002.

Naval Postgraduate School, NPS-CS-02-003, Demonstration of Quality of Security
Service Awareness for IPsec, Spyropoulou, Evdoxia., Levin, Timothy, and Irvine,
Cynthia, January 2002.

Thayer, R., Doraswamy,N., and Glenn, R., IP Security Document Roadmap, RFC 2411,
Network Working Group, November 1998, http://www.ietf.org/rfc/rfc2411.txt

Using IPsec (Internet Security Protocol), http://www.openbsd.org/faq/faq13.html,
October 2001.

XML Specification, http://www.w3.org/TR/2000/REC-xml-20001006 , Aug 2002

XML Schema specifications, http://www.w3.org/TR/xmlschema-0, Aug 2002

XML Namespace Recommendation, http://www.w3.org/TR/REC-xml-names/

XSLT Specifications, http://www.w3.org/TR/xslt, Aug 2002 RFC2396

73

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Commander, Naval Security Group Command

Naval Security Group Headquarters
Fort Meade, Maryland

4. Deborah M. Cooper

Deborah M. Cooper Company
 Arlington, Virginia

5. Louise Davidson

N643, Presidential Tower 1
Arlington, Virginia

6. William Dawson

Community CIO Office
Washington DC

7. Angelos Keromytis

Dept of Computer Science
Columbia University
New York

8. Richard Hale

Defense Information Systems Agency
Falls Church, Virginia

9. Michael Green, Director

 Public Key Infrastructure Program Management Office
 National Security Agency
 Ft. Meade, Maryland

10. Cynthia E. Irvine
 Computer Science Department, Code CS/IC
 Naval Postgraduate School
 Monterey, California

74

11. Timothy Levin
 Computer Science Department, Code CS
 Naval Postgraduate School
 Monterey, California

12. Brig H S Lidder

 Mil Attaché
 Embassy Of India, Washington DC

13. Matt Blaze
 AT&T Labs - Research
 Florham Park, New Jersey

14. Joan Feigenbaum
 AT&T Labs – Research
 Florham Park, New Jersey

15. John Ioannidis
 AT&T Labs - Research
 Florham Park, New Jersey

16. Douglas Maughan

 DARPA / ATO
 Arlington VA

17. John Drake

 Schafer Corporation
 Arlington VA

18. Keith T. Schwalm

 White House
 Washington DC

19. David M. Wennergren

 Department of Navy
 Office of the Chief Information Officer
 Navy Pentagon
 Washington, DC

20. Elaine S. Cassara

 Branch Head, Information Assurance
 Washington, DC

21. Paul A. Karger

 Thomas J. Watson Research Center

75

 Yorktown Heights, NY

22. Evie Spyropoulou
 Agia Paraskevi

 Athens, Greece

23. James P Anderson
 Port Washington, PA

24. George Dinolt
 Computer Science Department, Code CS
 Naval Postgraduate School
 Monterey, California

